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The definition of a linear cocycle

Given

� an ergodic system (X ,µ, T ), where

(X ,µ) is a probability space and

T : X → X is an ergodic map

� a measurable function A : X → Mat(m,R)
we call linear cocycle over T the skew-product map

F : X × Rm → X × Rm
defined by

F (x, v) = (Tx, A(x)v)

This map defines a new dynamical system on the

bundled space X × Rm
, and its iterates are

Fn(x, v) = (Tnx, A(n)(x)v), where

A(n)(x) := A(Tn−1x) · . . . · A(Tx) · A(x)

We will fix the base dynamics T and identify the

cocycle F with the function A defining its fiber action.



Example: random (i.i.d.) cocycles

� Base dynamics: (X ,µ, T ) is a Bernoulli shift i.e.

given a probability space of symbols (Σ,ν), we put

X = ΣZ
,

µ = νZ
and

if x = {xk}k∈Z ∈ X then Tx = {xk+1}k∈Z.

� Fiber action: A : X → GL(m,R) locally constant

i.e. it depends on a (fixed) finite number of

coordinates:

If x = {xk}k∈Z, then A(x) = �A(x0) for some

measurable map �A : Σ → GL(m, R).
More generally,

A(x) = �A(x0, x1, . . . , xl−1)

for some measurable map �A : Σl → GL(m, R).

Related example: Markov cocycles.



Example: quasi-periodic cocycles

� Base dynamics: (X ,µ, T ) is a torus translation

X = Td = (R/Z)d
(d = 1 or d > 1),

µ = Haar measure and

Tx = x +ω for some ergodic translation ω ∈ Td
.

� Fiber action: A : Td → Mat(m,R) real analytic

hence holomorphic in a neighborhood of the torus.

Other examples: cocycles over a skew-translation or

over a hyperbolic toral automorphism.



The Lyapunov exponents of a linear cocycle

Consider a base dynamical system (X ,µ, T ) and a

linear cocycle A : X → Mat(m,R) s.t. log
+�A� ∈ L1(dµ).

Let A(n)(x) := A(Tn−1x) . . . A(Tx)A(x) be its iterates.

By Kingman’s ergodic theorem, for every 1 � k � m,

the following limit exists:

Lk(A) := lim
n→∞

1

n
log sk(A(n)(x)) µ a.e. x ∈ X

= lim
n→∞

�

X

1

n
log sk(A(n)(x))µ(dx)

and it is called the k-th Lyapunov exponent of A.

We have

∞ > L1(A) � L2(A) � . . . � Lm(A) � −∞



The continuity problem

Fix a base ergodic system (X ,µ, T ).
Consider a metric space Cm of measurable cocycles

A : X → Mat(m,R).

Establish continuity properties (or lack thereof) for the

Lyapunov exponents, i.e. for the maps

Cm � A → Lk(A) ∈ [−∞,∞)

Establish quantitative continuity properties, i.e. a

modulus of continuity (e.g. Hölder, weak-Hölder)

under further appropriate assumptions.

Nota bene: The continuity of the Lyapunov exponents

depends on the space of cocycles and its topology, and

in some sense is rare (J. Bochi), unless strong

regularity assumptions on the cocycles are made.
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An abstract, general approach to proving
continuity properties of Lyapunov exponents

We devise an abstract scheme to prove quantitative

continuity of the Lyapunov exponents, one that is

applicable to different types of base dynamics, e.g.

� Quasi-periodic models

� Random models

� Markov models

. . .

The main assumption required by our scheme is that

some ‘appropriate’ large deviation type (LDT)

estimates are available.

This scheme relies upon ideas introduced in the

context of quasi-periodic Schrödinger cocycles in

Reference: M. Goldstein and W. Schlag, Hölder continuity of the integrated

density of states for quasi-periodic Schrödinger equations and averages of

shifts of subharmonic functions, Annals of Math, 2001.



LDT (i.e. concentration of measure) estimates in
classical probability theory

Let X0, X1, X2, . . . be a real valued independent

random process, and let

Sn =
n−1�

j=0

Xj be the corresponding sum process .

Hoeffding’s inequality: If

��Xi
�� � C a.s. then

P
� ��1

n
Sn − E(1

n
Sn)

�� > ε

�
� e−c(ε)n

holds for all n, where c(ε) ∼ C−2 ε2
.

Compared to the classical large deviation principle of

Cramér, this statement is less sharp / precise, but it

is more general and it is uniform in the data.



Introducing our ’appropriate’ version of large
deviations

Let (X ,µ, T ) be an ergodic base dynamical system.

An observable is any measurable map ξ : X → R.

Denote

Sn ξ(x) :=
n−1�

j=0

ξ(T jx) and �ξ� :=
�

X
ξ(x)µ(dx)

We say that the observable ξ satisfies a base LDT if for

all ε > 0 there is n00 ∈ N such that for all n � n00

µ {x ∈ X :
��1
n

Sn ξ (x) − �ξ�
�� > ε} < ι(ε, n)

where as n → ∞, ι(ε, n) decreases to 0 fast (e.g.

exponentially or sub-exponentially).

We call the threshold n00 and the rate of decay ι(ε, n)
LDT parameters.



Introducing our ’appropriate’ version of large
deviations

Let (X ,µ, T ) be an ergodic base dynamical system.

Let A : X → Mat(m,R) be a linear cocycle over T .

Recall the notations

A(n)(x) := A(Tn−1x) . . . A(Tx)A(x)

L(n)
1

(A) :=

�

X

1

n
log�A(n)(x)�µ(dx)

We say that the cocycle A satisfies a fiber LDT with

parameters n00 and ι(ε, n) if for all n � n00 we have:

µ {x ∈ X :
��1
n

log�A(n)(x)�− L(n)
1

(A)
�� > ε} < ι(ε, n)

The fiber LDT is called uniform if the estimate above

holds with the same parameters for all nearby

cocycles.



The abstract continuity pseudo-theorem

Given are an ergodic dynamical system (X ,µ, T ) and a

metric space Cm of measurable cocycles

A : X → Mat(m,R), satisfying some natural

integrability assumptions.

We assume the following:

� A base LDT holds for a ‘large enough’ set of

observables ξ.

� A uniform fiber LDT holds for all cocycles A with

L1(A) > L2(A).

Then each Lyapunov exponent is a continuous

function of the cocycle.

Moreover, if L1(A) > L2(A), then near A, the maximal

Lyapunov exponent has a modulus of continuity

whose strength depends on the sharpness of the LDT

estimate, i.e. on how fast the sequence {ι(ε, n)} decays.



Applicability of the abstract continuity theorem

We have derived the appropriate LDTs for

� Quasi-periodic models under progressively more

general assumptions (but only for Diophantine

translations).

� Random models (both Bernoulli and Markov shifts

of a very general type) under an irreducibility

condition.

� LDTs are available for spaces of cocycles with

other types of base dynamics, but with greater

limitations.

The abstract continuity result then applies to all of

these models.

In particular this leads to continuity properties of the

Lyapunov exponents as functions of the energy, for

different types of discrete Schrödinger-like operators.



The abstract continuity theorem,
deriving appropriate large deviations,
a general avalanche principle and more

Reference:

P. Duarte and S.K., Lyapunov exponents of linear cocycles: continuity via

large deviations, Atlantis Studies in Dynamical Systems, 2016.

P Duarte and S.K., Large deviation type estimates for iterates of linear

cocycles, a survey to appear in Stochastics and Dynamics, 2016.

P Duarte and S.K., various recent preprints on the arXiv.



The proof of continuity

Blocks of different time scales in an inductive

procedure.



The Avalanche Principle: ideal situation

Consider a long chain of matrices g0, g1, . . . , gn−1 in

Mat(m,R).

In general it is not true that

�gn−1 . . . g1 g0� � �gn−1� . . . �g1� �g0�

unless some atypically sharp alignment of the singular

directions of the matrices gj occurs.

. . . but let us proceed as if it were true.

Hence the above product linearizes:

log �gn−1 . . . g1 g0� � log �gn−1�+ . . . + log �g1�+ log �g0�
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The Avalanche Principle: definitions

We call gap ratio of a matrix g ∈ Mat(m,R) the

quotient

ρ(g) =
s1(g)
s2(g)

between its largest and second largest singular values.

Given g0, g1 ∈ Mat(m,R), we call the number

θ(g0, g1) :=
�g1 g0�

�g1� �g0�
∈ [0, 1]

the expansion rift of g0, g1. It measures the break of

expansion in the matrix product g1 g0.

More generally, we define the expansion rift of a chain

of matrices g0, g1, . . . , gn−1 in Mat(m,R) to be the

number

θ(g0, g1, . . . , gn−1) :=
�gn−1 . . . g1 g0�

�gn−1� . . . �g1� �g0�



The Avalanche Principle: formulation

With this terminology, the AP says that given any long

chain of matrices g0, g1, . . . , gn−1 ∈ Mat(m,R), where

� the gap ratio of each matrix is large and

� the expansion rift of any pair of consecutive

matrices is never too small,

then the expansion rift of the product is almost

multiplicative:

θ(g0, g1, . . . , gn−1) � θ(g0, g1) θ(g1, g2) . . . θ(gn−2, gn−1)

Equivalently,

�gn−1 . . . g1 g0� �g1� . . . �gn−2�
�g1 g0� . . . �gn−1 gn−2�

� 1

or

�gn−1 . . . g1 g0� � �g1 g0� . . . �gn−1 gn−2�
�g1� . . . �gn−2�


