On quasi-conformal (in-) compatibility of satellite copies of the Mandelbrot set

Luna Lomonaco

USP

Joint work with Carsten Petersen

August 11, 2015

Quadratic polynomials on $\widehat{\mathbb{C}}$

- ▶ $P_c(z) = z^2 + c$, ∞ (super)attracting fixed point, with basin $\mathcal{A}(\infty)$.
- ▶ Filled Julia set $K_c = K_{P_c} = \widehat{\mathbb{C}} \setminus \mathcal{A}(\infty)$, $J_P = \partial K_P = \partial \mathcal{A}(\infty)$
- ▶ Mandelbrot set: set of parameters for which K_{P_c} is connected (connectedness locus for the family P_c).

Figure : The Mandelbrot set.

Figure : κ_0 , 0 center of the main component

Figure : κ_c , ϵ center period 2 component.

Figure: $\kappa_{1/4}$, 1/4 root of the main component.

Figure : κ_c , c center period 3 component.

Polynomial-like mappings

- ▶ A (dg d) polynomial-like map is a triple (f, U', U), where $U' \subset \subset U$ and $f: U' \to U$ is a (dg d) proper and holomorphic map.
- ▶ Straightening theorem (Douady-Hubbard, '85) Every (dg d) polynomial-like map $f: U' \to U$ is hybrid equivalent to a (dg d) polynomial.

Figure : K_c , c center of the period 3 component

Figure: K_0 , 0 center of the main component

▶ Theorem (D-H,'85) (Under some conditions) there exists a homeomorphism χ between the connectedness locus of a family of polynomial-like maps and the Mandelbrot set M.

Consequence: little copies of *M* inside *M*

- ► Satellite copies of M (attached to some hyperbolic component of M): \(\chi\) homeomorphism except at the root.
- \blacktriangleright H primitive (non satellite): χ homeomorphism,
- ▶ Haissinsky ('00): χ homeomorphism at the root in the satellite case.

M and its little copies

- ▶ Conjecture (D-H,'85) χ is the restriction of a quasi-conformal map in the primitive case, and away from neighborhoods of the root in the satellite case.
- Lyubich ('99): χ is qc in the primitive case, and outside a neighborhood of the root in the satellite case.
- ► Are the satellite copies mutually qc homeomorphic?
- L. ('14): the root of any two satellite copies have restrictions q-c conjugate.

Satellite copies, result

- ▶ $M_{p/q}$ satellite copy attached to M_0 at c, where P_c has a fixed point with multiplier $\lambda = e^{2\pi i p/q}$
- ▶ Theorem (L-Petersen, 2015): For p/q and P/Q irreducible rationals with $q \neq Q$,

$$\xi:=\chi_{P/Q}^{-1}\circ\chi_{p/q}:M_{p/q}\to M_{P/Q}$$

is not quasi-conformal, *i.e.* it does not admit a quasi-conformal extension to any neighborhood of the root.

Figure: м.

Main idea

▶ **Proposition:** $c \in (M_{p/q} \setminus \{0\})$, $f_{\lambda} : U' \to U$ polynomial-like restriction of P_c , $\xi(c) \in M_{P/Q}$ and $g_{\nu} : V' \to V$ polynomial-like restriction of $P_{\xi(c)}$. Any quasi-conformal conjugacy ϕ between f_{λ} and g_{ν} has:

$$\limsup_{z \to \beta_f} \mathsf{Log} K_{\phi}(z) \geq d_{\mathbb{H}_+}(\Lambda, N),$$

where $\Lambda = Log(multiplier(\beta_f))$, $N = Log(multiplier(\beta_g))$

- ▶ Proof of the Proposition:
 - 1. $(U \setminus \{\beta_f\})/f$ and $(V \setminus \{\beta_g\})/g$ (marked) quotient tori.
 - 2. ϕ induces a qc homeomorphism between the corresponding (marked) quotient tori.
 - 3. Teichmüller extremal theorem for complex tori:

$$d_{\mathbb{H}_+}(\Lambda, M) = d_T(T_\Lambda, T_M) =: inf_{\varphi} Log K_{\phi},$$

where $\varphi: T_{\Lambda} \to T_{M}$ qc homeo (respecting the marking).

4. So $\limsup_{z\to 0} \operatorname{Log} K_{\phi}(z) \geq \inf_{\phi} \operatorname{Log} K_{\phi} = d_{T}(T_{\Lambda}, T_{M}) = d_{\mathbb{H}_{+}}(\Lambda, M).$

Lower bound for qc conjugacy, parameter plane

1. Generalization of the Teich. extr. thm for a non-compact setting and a holomorphic motion argument give: **Theorem:** $\Lambda^* \in \Lambda(M_{p/q})$ Misiurewicz parameter s.t. the critical value is prefixed to 0, $M^* = \hat{\xi}(\Lambda^*)$. Then

$$\limsup_{\Lambda \to \Lambda^*} \mathsf{Log} \mathcal{K}_{\hat{\xi}}(\Lambda) \geq \mathit{d}_{\mathbb{H}_+}(\Lambda^*, \mathit{M}^*).$$

- 2. Yoccoz inequality gives that he hyperbolic size of the limbs of the considered limbs shrink to 0 going to the root,
- 3. ρ multiplier of the α f.p., computations (using Res iter) give: For $q \neq Q$, and $\rho = e^{it} \in \mathbb{S}^1$,

$$d_{\mathbb{H}_+}(\Lambda(\rho), M(\rho)) \stackrel{\rho \to 1}{\longrightarrow} \infty$$

Combining 1, 2, 3 we have the result.

Thank you for your attention!

