Rempe model and Denjoy odometer for hedgehogs of complex quadratic polynomials

> Mitsuhiro Shishikura (Kyoto University)

School and Conference on Dynamical Systems ICTP, Trieste August 4, 2015

 $f(z) = \lambda z + a_2 z^2 + a_3 z^3 + \ldots$ holomorphic or polynomial Coexistence of different dynamical behaviors Rotation-like Chaotic conjugate to a rotation NOT conjugate to a rotation but still moves under the influence of the rotation Similarity to the Julia set of exponential maps hedgehogs defined by Perez Marco Straight brush model by Rempe $|\lambda| = e^{2\pi i \alpha}, \ \alpha \in \mathbb{R} \setminus \mathbb{Q}$ irrationally indifferent fixed pt Renormalization for irrat. indiff. fixed pts Near-parabolic (cylinder) renormalization Dynamical charts and Denjoy odometer

Return map and renormalization

The renormalization \mathcal{R} : $f \mapsto \mathcal{R}f$ can be considered as a metadynamics on the space of dynamical systems of certain class.

Various Renormalizations

proper subintervals

-> Cantor set

Feigenbaum, Coullet-Tresser, Lanford, H. Epstein, Polynomial-like maps: Douady-Hubbard, Sullivan, McMullen, Lyubich

Rand, Katznelson-Ornstein, Khanin-Sinai, de Melo, de Faria, Yampolsky, A. Epstein-Yamplosky

When a priori bounds or convergence of $\mathcal{R}^n f$ are known,

it is easy to derive the properties of the original f .

Feigenbaum Circle map Sector/Near-parabolic

covering by sector or croissant-like domains gluing/identification needed to define the renormalization

Yoccoz, Perez-Marco, Inou-S.

Need some work to reconstruct f from $\mathcal{R}^n f$.

Local dynamics of $f(z) = \lambda z + a_2 z^2 + a_3 z^3 + \ldots$

up to local analytic conjugacies

Trivial if $0 < |\lambda| < 1$ or $|\lambda| > 1$ (linearizable) Assume $|\lambda| = 1$, i.e. $\lambda = e^{2\pi i \alpha}$ with $\alpha \in \mathbb{R}$

Parabolic: $\alpha \in \mathbb{Q}$

Periodic or infinite dimensional moduli (Ecalle-Voronin) Irrationally indifferent: $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ Linearizable (e.g. if α is a Brjuno number) Siegel disk=maximal domain of linearization Non-linearizable (e.g. if α very Liouville) Cremer point Perez Marco's *hedgehog* (local invariant set)

by Ricardo Perez-

Plan Try to describe the local dynamics near Cremer points for specific cases of quadratic polynomials with *high type* rotation numbers, via *near-parabolic renormalization* and *dynamical charts*. Construct a model for the hedgehog.

Cylinder/Near-parabolic renormalization

Hypothesis: \exists another fixed pt σ near 0, \exists croissant-shaped fundamental region, quotient is isomorphic to \mathbb{C}/\mathbb{Z}

Rf can be defined when $f(z) = e^{2\pi i \alpha} z + \dots$ is a small perturbation of $z + a_2 z^2 + \dots (a_2 \neq 0)$ and $|\arg \alpha| < \pi/4$.

If $\mathcal{R}f, \mathcal{R}^2f, \mathcal{R}^3f, \ldots$ can be defined, ...

More on the construction of $\mathcal{R}f$ Suppose $f(z) = e^{2\pi i \alpha} z + a_2 z^2 + O(z^2)$ has another fixed pt σ near 0. Define the pre-Fatou coordinate w by $z = \tau_f(w) = \frac{\sigma}{1 - e^{-2\pi i \alpha w}},$ which is the universal covering of $\hat{\mathbb{C}} \setminus \{0, \sigma\}$ with the deck transf. $T_{-1/\alpha}:z\mapsto z-\frac{1}{\alpha}.$

The dynamics lifts to $F(w)$ which is close to $w + 1$ outside $\cup_{n \in \mathbb{Z}} B_R$.

If f is from a certain class of maps containing $e^{2\pi i \alpha} z + z^2$, then ...

 $T: z \mapsto z+1$ A Consequence from Inou-S. Theorem: f and $\mathcal{R}^n f$ admit a "canonical representation".

f

 Φ_{rep}

 F_{can} is a *canonical* map on the *universal* pattern, NOT depending on f . Difference comes from the gluing θ_f .

 Φ_{attr}

 $T_{-1/\alpha}$

Dynamical charts

Glue model dynamics on the charts, to define/reconstruct the map

1. well-defined after gluing 2. return map is F_{can} modulo ψ_g 3. this picture embeds into f

Construction of dynamical charts Ω_f $\Omega_{\mathcal{R}f}$

f

is an invariant set containing the critical orbit $\Omega^{(0)} \supset \Omega^{(1)}_{k_1} \supset \cdots \supset \Omega^{(n)}_{k_1, k_2, ..., k_n} \supset \Omega^{(n+1)}_{k_1, k_2, ..., k_n, k_{n+1}} \supset \ldots$ α ^(*n*)_{$k_1, k_2, ..., k_n$ is isomorphic to truncated checkerboard pattern $\Omega_{\mathcal{R}^n f}$ they are glued via $\theta_{\mathcal{R}^n f}$} "maximal hedgehog" $\Lambda_f =$ ∞ *n*=0 (*k*1*,...,kn*)∈*Aⁿ* $\bigcup \qquad \Omega^{(n)}_{f,\,k_1,k_2,...,k_n}$

Rf

Index set A_n and Denjoy odometer

 $A_n \doteq (\mathbb{Z}/k_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/k_n\mathbb{Z}) \subset \mathbb{Z}^n$, where $\mathbb{Z}/k_j\mathbb{Z}$ is identified with $\left[-\left[\frac{k_j-1}{2}\right], \left[\frac{k_j}{2}\right]\right]$ " $\cap \mathbb{Z}(\subset \mathbb{Z})$ $\alpha = \pm 1$ 1 k_1 \pm -1 $k_2 \pm$ 1

Odometer (adding machine) $45678 \rightarrow 45679 \rightarrow 45680 \rightarrow 45681 \rightarrow \cdots \rightarrow 45699 \rightarrow 45700 \rightarrow 45701 \rightarrow \ldots$
carry carry First approximation of the combinatorics $\tilde{r}_{\alpha,n}$: $(\mathbb{Z}/k_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/k_n\mathbb{Z})$ \circlearrowleft at each digit, add +1 or -1 carry to the right carry occurs at 0 not at 9 An irrational rotation is like a broken odometer. $45678 \to 45679 \to 4567A \to 45680 \to 45681 \to \cdots \to 45689 \to 45700 \to \ldots$ Actual combinatorics $r_{\alpha,n}: A_n \to A_n$ is modelled after the action of *R*^α on a partition of *S*1. $A_{\infty} = \lim_{\alpha} A_n$ and $r_{\alpha,\infty} : A_{\infty} \to A_{\infty}$ is conjugate ro R_{α} on S^1 .

Case of exponential maps $E_{\alpha}: z \mapsto \lambda e^{z}$ Case of exponential maps $E_{\lambda}: z \mapsto \lambda e^z$

Cantor bouquet: hairs indexed by $\mathbb{Z}^{\mathbb{N}}$ $\frac{60}{100}$ which are C∞ curves.

Rempe's straight brush model

Let $g(z) = \lambda e^z$ with $\lambda \in \mathbb{R}$ and $0 < \lambda < 1/e$. Then g has an attracting fixed pt.

Itineraries $\underline{s} = (s_n)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}}$ with shift σ

Model map $G: \mathbb{Z}^{\mathbb{N}} \times [0, \infty) \to \mathbb{Z}^{\mathbb{N}} \times \mathbb{R}$ $G(s,t)=(\sigma(s),e^{z}-1-2\pi|s_{2}|)$

by Lasse Rempe

Straight brush model $\overline{X} = \{(s,t) : \forall n \geq 0, \text{ proj}_2(G^n(s,t)) \geq 0\}$

Theorem (Rempe) $J(g)$ is homeomorphic to \overline{X} and the dynamics *g* and *G* are conjugate.

 $\mathbb{Z}^{\mathbb{N}}$

We propose a similar model for the maximal hedgehog of irrat. indiff. fixed pts within our class.

Straight brush (Rempe) model for the hedgehogs Denjoy odometer $A_{\infty}(\alpha) = \lim_{\leftarrow} A_n(\alpha) \ (\subset \mathbb{Z}^{\mathbb{N}}),$ shift $\sigma: A_{\infty}(\alpha_n) \to A_{\infty}(\alpha_{n+1}),$ where $\alpha_0 = \alpha$, $\alpha_{n+1} = dist(\frac{1}{\alpha_n}, \mathbb{Z}).$ Model map $G_n: A_{\infty}(\alpha_n) \times [0, \infty) \to A_{\infty}(\alpha_{n+1}) \times \mathbb{R}$

$$
G_n(\underline{s},t) = \left(\sigma(\underline{s}), \frac{1}{\alpha_n} \log(1 + 2\pi \alpha_n e^t) - |s_2|\right)
$$
 modeled after

Model space

$$
\overline{X} = \{ (\underline{s}, t) \in A_{\infty}(\alpha_0) \times [0, \infty) : \forall n \ge 0, \ proj_2(G_n \circ \cdot \circ G_0(\underline{s}, t)) \ge 0 \}
$$

Theorem. For a map f to which Inou-S. Theorem applies and irrational number α of high type, the maximal hedgehog is homeomorphic to X .

Note that
$$
\frac{1}{\alpha} \log(1 + 2\pi \alpha e^t) \sim \begin{cases} 2\pi e^t & (t < \log \alpha^{-1}) \\ \alpha^{-1}(t - \log \alpha^{-1} + const) & (t > > \log \alpha^{-1}) \end{cases}
$$

which is related to Yoccoz' condition \mathcal{H} (for global analytic conjugacy
on S^1)