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Interest

Understand the behavior of : attractors of 3-flows presenting
equilibria accumulated by regular trajectories.

Main example Geometric Lorenz attractor.

First Case: Expanding

Second Case: Contracting

(1) from the topological point of view.

(2) from the statistical point of view.

We start recalling these attractors.
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Lorenz attractor

Lorenz (1963) exhibited a 3-dimensional o.d.e. whose solutions
seemed to depend sensitively on the initial point.

Lorenz equations:

X(x, y, z) =






ẋ = 10 (−x+ y)
ẏ = 28 x− y − xz
ż = −8/3 z + xy ,

The classical parameters are : α = 10, β = 28, γ = 8/3 .



Lorenz Conjecture

The flow generated by the equations above contains a volume
zero attractor Λ that is sensitive with respect to initial data.

The butterfly shape of this attractor:
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Solution of Lorenz Conjecture

The solution of this conjecture was given by Tucker, at the
year 2000, under the advisor of L. Carleson. He combines
normal form techniques nearby the singularity and computer
assistence techniques far from singularity.

Meanwhile, it was introduced a geometric model for this
attractor, that satisfies all all the predictions by Lorenz, that
we present very briefly in the sequel.
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Geometric Lorenz attractor

Introduced by GW and ABS in the seventies to model the flow
generated by the Lorenz’ equations.



Geometric Lorenz attractor

Introduced by GW and ABS in the seventies to model the flow
generated by the Lorenz’ equations.

Σ

Σ

Σ
_

R

R

+



Expanding Geometric Lorenz attractor

The eigenvalues satisfy the condition

0 < −λ3 < λ1 < −λ2, λ3 + λ1 > 0.
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Main hypothesis

Existence of a contracting foliation F s for the Poincaré map

P : Σ → Σ; Σ = S− ∪ Γ ∪ S+
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The quotient map

The quotient map f : I → I associated to F s:

f

0
+1/2−1/2



Properties of f =⇒ Lorenz conjecture

f is increasing, |f �| >
√
2 where it is defined and |f �(0±| = ∞.

⇓

The maximal invariant set Λf is a transitive attractor for f .

⇓

The maximal invariant set ΛP is a transitive attractor for P .

⇓

Conjecture by Lorenz follows for geometric models.
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Lorenz-like attractors

Morales, Pacifico, Pujals

Theorem A Robust transitive sets for 3-flows are either
hyperbolic or singular-hyperbolic.

Theorem B Robust transitive sets for 3-flows with equilibria
are partially hyperbolic attractors or repellers.

singular-hyperbolic : partial hyperbolic, central bundle
expanding area.
singular-hyperbolic attractor ∼̇= Lorenz-like attractor
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From statistical point of view

Galatolo, Pacifico

Theorem. Let F be the Poincaré map and µ the SBR measure
for a Geom. Lorenz attractor. Then F has exponential decay
of correlations.

Theorem. Let X t a geometric Lorenz flow. Then for
µ-almost all x, limr→0

log τr(x,x0)
− log r = dµ(x0)− 1.



Hitting time

Fix x0 ∈ M and let Br(x0): ball with radius r at x0 ∈ Λ.
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Hitting time = τr(x, x0) is the time needed to O(x) enter for
the first time in Br(x0). dµ = local dimension of µ at x0.
When x = x0, τr(x0, x0) = recurrence time.



Steps to prove Log-law for Geom. Lorenz

F : Σ → Σ: the first return map to Σ, a cross section to X t.

1. Theorem. Let µF an invariant SRB measure for F . Then
the system (Σ, F, µF ) is fastly mixing (exponentially).

2. Theorem. µF is exact, that is, dµF (x) exist almost every
x ∈ Σ.

3. Let x0 ∈ Σ and τr,Σ(x, x0) be the time needed to Ox

enter for the first time in Br(x0) ∩ Σ = Br,Σ.

Theorem
limr→0

log τr(x,x0)
− log r = limr→0

log τr,Σ(x,x0)
− log r = dµF (x0).

4. Theorem dµ(x) = dµF (x) + 1.
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Recall: decay of correlation

F : Σ → Σ: a first return map to Σ, a cross section to X t.

The map F has exponential decay of correlations:

∃ C > 0, λ < 1 such that ∀ n ≥ 1 it holds

|
�
g(F n(x)) · f(x)dµ−

�
f(x)dµ ·

�
g(x)dµ| ≤ Cλn.



Main difficult: F has exponential decay

Ingredient:

The Wasserstein-Kantorovich distance defined as follows:

Given two probabilities on M , µ1 and µ2, the W-K-distance is

W (µ1, µ2) = supg∈Lip1(M)

�
|
�
M gdµ1 −

�
M gdµ2|

�

Lip1(M) : the space of 1-Lipschitz maps on M .



W-K distance versus decay

Proposition 1. (decay in function of distance) Let µ1 � µ and
dµ1 = f(x)dµ. Then, for g ∈ Lip1(M) we have

|Cn(g, f)| ≤ L(g) · �f�1 ·W ((F ∗)n(µ1), µ).

Proposition 2. (distance in function of decay) Assume that for
each f ∈ L1(µ) and g ∈ Lip1(M) it holds:

|Cn(g, f)| ≤ C · �g�Lip1(M) · �f�L1(µ) · Φ(n).

Then, taking dµ1 =
f

�f�1 with
�
f(x)dµ = 1 we get

W ((F ∗)n(µ1), µ) ≤ 2 · C · Φ(n).
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W-K dist. versus disintegration

Proposition 3. Let µ1 and µ2 be invariant for (F,Σ) s.t.

• µ1(A) =
�
µ1
γ(A ∩ γ)dµ1

x,

• µ2(A) =
�
µ2
γ(A ∩ γ)dµ2

x,

with µi
x having bounded variation density. Also,

(1) for each γ ∈ F s, W1(µ1
γ, µ

2
γ) ≤ �,

(2) sup�h�∞

�� � hdµ1
x −

�
hdµ2

x

�� ≤ δ.

Then

W (µ1, µ2) ≤ �+ δ.



(Σ, F, µ) is fastly mixing
Theorem . (Σ, F, µ) is fastly mixing for Lipshitz and L1

observables.

Strategy:

Combine the three propositions above to deduce exponentially
decay of correlations.
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Contracting Lorenz flow

The construction of a contracting Lorenz attractor is much the
same as the geometric Lorenz attractor. Such attractor is
named nowadays a Rovella attractor.

Differences : (1) the condition λ1 + λ3 > 0 is replaced by
λ1 + λ3 < 0, and (2) r > s+ 3, r = −

λ2
λ1
, s = −

λ3
λ1

> 1.



Contracting Lorenz flow

The construction of a contracting Lorenz attractor is much the
same as the geometric Lorenz attractor. Such attractor is
named nowadays a Rovella attractor.

Differences : (1) the condition λ1 + λ3 > 0 is replaced by
λ1 + λ3 < 0, and

(2) r > s+ 3, r = −
λ2
λ1
, s = −

λ3
λ1

> 1.



Contracting Lorenz flow

The construction of a contracting Lorenz attractor is much the
same as the geometric Lorenz attractor. Such attractor is
named nowadays a Rovella attractor.

Differences : (1) the condition λ1 + λ3 > 0 is replaced by
λ1 + λ3 < 0, and (2) r > s+ 3, r = −

λ2
λ1
, s = −

λ3
λ1

> 1.



Contracting Lorenz flow

The construction of a contracting Lorenz attractor is much the
same as the geometric Lorenz attractor. Such attractor is
named nowadays a Rovella attractor.

Differences : (1) the condition λ1 + λ3 > 0 is replaced by
λ1 + λ3 < 0, and (2) r > s+ 3, r = −

λ2
λ1
, s = −

λ3
λ1

> 1.



1-dimensional Rovella map

The 1-dimensional Rovella map f0 :

1− 1 0



Comments on Rovella attractor

The map f0 is chaotic and not stable, since it is accumulated
by maps which have periodic attracting orbits.

On opposition to the robustness of a Lorenz attractor, the
Rovella attractor is not robust .

But, it persists in a measure theoretical sense: there exists a
one-parameter family of positive Lebesgue measure of C3 close
vector fields to X0, the starting vector field, which have a
transitive non-hyperbolic attractor.
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Log law for Rovella attractor

S. Galatolo, I. Nisoli and M. J. Pacifico

Theorem. (GNP) Let F be the Poincaré map and µ the SBR
measure for a Geom. Rovella attractor. Then F has

exponential decay of correlations.

Theorem. (GNP) Let Λ a geometric Rovella attractor. Then
for µ-almost all x ∈ Λ, limr→0

log τr(x,x0)
− log r = dµ(x0)− 1.
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Strategy in this case

Follow the same steps as before.

Main difficult: prove exponential decay for the Poincaré map.

This time F : Σ → Σ is a skew-product with non-expanding
base map f : I → I.

Thus, we have to improve the arguments. We follow a general
principle: the statistical properties of a skew product are
obtained from the statistical properties of the base map. To
do so we proceed as follows.
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Convergence to equilibrium

Definition We say that (f, µ) has exponential convergence to
equilibrium with respect to a reference measure ν and norms
�.�a and �.�b, if there are C,Λ ∈ R+, Λ < 1 such that for
f ∈ L1(ν), g ∈ L1(µ) and all n ≥ 1 it holds

��� f · (g ◦ T n) dν −
�
g dµ

�
f dν

�� ≤ CΛn · �g�a · �f�b.

Definition Let Q = I × I and f : Q → R is integrable, we
denote by π(f) : I → R the function

π(f) : x �→

�

I

f(x, t) dt.



Skew product, base having exp-conv to equilibrium

Theorem Let F : Q �, F (x, y) = (T (x), G(x, y)). Let µ be
F -invariant measure with bsolutely continuous marginal µT on
the x-axis which, moreover, is T -invariant. Suppose that

1 (T, µT ) has exponential decay of correlations with respect
to the norm � · �∞ and to a norm denoted by � · � .

2 T : nonsingular resp to Lesbegue, piecewise continuous,
monotonic: ∪Ii = I, T : homeo onto its image.

3 G is λ-Lipschitz in y with λ < 1.

Then (F, µ) has exponential convergence to equilibrium with
respect to ν = µT ×m (the product of the a.c.i.m of T and
the Lebesgue measure).



Exp-conv to equilibrium

In the following sense:

There are C,Λ ∈ R+, Λ < 1 such that
����
�

f · (g ◦ F n) dν −

�
g dµ

�
f dν

���� ≤

CΛn
· �g��lip · (||π(f)|| + ||f ||1)

for each f ≥ 0.



Conv equilibrium versus decay correlation

Let F : Q �, F (x, y) = (T (x), G(x, y)), µ a F -invariant
probability measure with absolutely continuous T -invariant
marginal µT on the x-axis and satisfying

1 (T, µT ) has exponential convergence to equilibrium with
respect to the norms � · �∞ and � · � ;

2 T is nonsingular with respect Lesbegue measure,
piecewise continuous and monotonic, ∃ {Ii}i=1,...,m,
∪Ii = I so that Ii, T is an homeo onto its image.

3 F is a uniform contraction on each vertical leaf.
Then F has exp decay of correlations:

����
�

f · (g ◦ F n) dµ−

�
g dµ

�
f dµ

���� ≤

C2Λ
n
�g��lip(�f��lip + �π(f)� + �f��).



Main Difficulties

(�) To apply these results, it is needed to work in the Banach
space of maps with generalized bounded variation. This space
fits better in this case than the space of Holder observables.

(�) Further, extract the right properties from the base map of
the skew product arising from the Rovella attractor.

The base map is not piecewise increasing anymore.

(�) The main technical problem is transform the information
we have about the base map (exponential decay with respect
to Holder and L∞ observables) into information about decay
of correlation respect to generalized bounded variation
observables.



Main Difficulties

(�) To apply these results, it is needed to work in the Banach
space of maps with generalized bounded variation. This space
fits better in this case than the space of Holder observables.

(�) Further, extract the right properties from the base map of
the skew product arising from the Rovella attractor.

The base map is not piecewise increasing anymore.

(�) The main technical problem is transform the information
we have about the base map (exponential decay with respect
to Holder and L∞ observables) into information about decay
of correlation respect to generalized bounded variation
observables.



Main Difficulties

(�) To apply these results, it is needed to work in the Banach
space of maps with generalized bounded variation. This space
fits better in this case than the space of Holder observables.

(�) Further, extract the right properties from the base map of
the skew product arising from the Rovella attractor.

The base map is not piecewise increasing anymore.

(�) The main technical problem is transform the information
we have about the base map (exponential decay with respect
to Holder and L∞ observables) into information about decay
of correlation respect to generalized bounded variation
observables.



Main Difficulties

(�) To apply these results, it is needed to work in the Banach
space of maps with generalized bounded variation. This space
fits better in this case than the space of Holder observables.

(�) Further, extract the right properties from the base map of
the skew product arising from the Rovella attractor.

The base map is not piecewise increasing anymore.

(�) The main technical problem is transform the information
we have about the base map (exponential decay with respect
to Holder and L∞ observables) into information about decay
of correlation respect to generalized bounded variation
observables.



The Rovella skew product F : Q �
(a) F (x, y) = (T (x), G(x, y)) (preserves vertical foliation),

(b) ∃ c ∈ I, k ≥ 0 s.t. if c /∈ [x1, x2] then
∀ y ∈ I : |G(x1, y)−G(x2, y)| ≤ k · |x1 − x2|,

(c) F |γ is λ-Lipschitz, λ < 1 on each leaf γ,

(d) T is onto, x = 0 is a discontinuity, piecewise C3, two
branches, O(T �(0)) = s− 1 > 0, T �(x) > 0 ∀ x �= 0,

(e) maxx>0 T �(x) = T �(1) and maxx<0 T �(x) = T �(−1),

(f) 1 and −1 are pre-periodic repelling,

(g) T has negative Schwarzian derivative: S(T ) < α < 0.



Main Theorem

Theorem F : Q � satisfying properties (a)–(g) above. Then
the unique SBR measure µF has exponential decay of
correlation respect to B(1,α) and L∞ observables, that is,
there are C,Λ ∈ R+, Λ < 1, such that
����
�

f · (g ◦ F n) dµF −

�
g dµF

�
f dµF

���� ≤ CΛn
�g�L∞�f�B(1,α), g ∈ L∞(Q) f ∈ B(1,α).

B(1,α): Banach space of generalized bounded variation maps.



Finally

F : Q � has exponential decay ⇒ log law for the hitting time.

Many thanks
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