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(Cries and whispers in windtree forests)

Diffusion of wind-tree billiards
and Lyapunov exponents of the Hodge bundle

Anton Zorich (joint work with Vincent Delecroix)

School and Conference on Dynamical Systems
ICTP, Trieste, July 2015

“You, my forest and water! One swerves, while the other shall spout
Through your body like draught; one declares, while the first has a doubt.”

J. Brodsky
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Diffusion in a periodic billiard (Ehrenfest “Windtree model”)
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Consider a billiard on the plane with Z2-periodic rectangular obstacles.

Old Theorem (V. Delecroix, P. Hubert, S. Lelièvre, 2014). For all parameters
of the obstacle, for almost all initial directions, and for any starting point, the
billiard trajectory spreads in the plane with the speed ∼ t2/3. That is,

limt→+∞ log (diameter of trajectory of length t)/ log t = 2/3.
The diffusion rate 2

3 is given by the Lyapunov exponent of certain renormalizing
dynamical system associated to the initial one.

Remark. Changing the height and the width of the obstacle we get quite
different billiards, but this does not change the diffusion rate!
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Changing the shape of the obstacle
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Almost Old Theorem (V. Delecroix, A. Z., 2015). Changing the shape of the
obstacle we get a different diffusion rate. Say, for a symmetric obstacle with
4m− 4 angles 3π/2 and 4m angles π/2 the diffusion rate is

(2m)!!

(2m+ 1)!!
∼

√
π

2
√
m

asm → ∞ .

Note that once again the diffusion rate depends only on the number of the
corners, but not on the (almost all) lengths of the sides, or other details of the
shape of the obstacle. Question of J.-C. Yoccoz
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect
the billiard table. The trajectory unfolds to a straight line. Folding back the
copies of the billiard table we project this line to the original trajectory. At any
moment the ball moves in one of four directions defining four types of copies of
the billiard table. Copies of the same type are related by a parallel translation.
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect
the billiard table. The trajectory unfolds to a straight line. Folding back the
copies of the billiard table we project this line to the original trajectory. At any
moment the ball moves in one of four directions defining four types of copies of
the billiard table. Copies of the same type are related by a parallel translation.

A B A
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Identifying the equivalent patterns by a parallel translation we obtain a torus;
the billiard trajectory unfolds to a “straight line” on the corresponding torus.



From the windtree billiard to a surface foliation
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Similarly, taking four copies of our Z2-periodic windtree billiard we can unfold it
to a foliation on a Z2-periodic surface. Taking a quotient over Z2 we get a
compact surface endowed with a measured foliation. Vertical and horizontal
displacement (and thus, the diffusion) of the billiard trajectories is described by
the intersection numbers c(t) ◦ v and c(t) ◦ h of the cycle c(t) obtained by
closing up a long piece of leaf with the cycles h = h00 + h10 − h01 − h11 and
v = v00 − v10 + v01 − v11.

h00

h01

h10

h11

v00 v10

v01 v11
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Diffeomorphisms of surfaces
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Observation 1. Surfaces can wrap around themselves.

Cut a torus along a horizon-
tal circle.
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a

a

b bc

a

a

b bc

a

a

c cb
=

It maps the square pattern of the torus to a parallelogram pattern. Cutting and
pasting appropriately we can transform the new pattern to the initial square one.
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Consider eigenvectors "vu and "vs of the linear transformation A =

(

1 1
1 2

)

with eigenvalues λ = (3 +
√
5)/2 ≈ 2.6 and 1/λ = (3−

√
5)/2 ≈ 0.38.

Consider two transversal foliations on the original torus in directions "vu, "vs. We
have just proved that expanding our torus T2 by factor λ in direction "vu and
contracting it by the factor λ in direction "vs we get the original torus.

Definition. Surface automorphism homogeneously expanding in direction of
one foliation and homogeneously contracting in direction of the transverse
foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square
torus by a continuous deformation expanding with a factor et in directions "vu
and contracting with a factor et in direction "vs. By construction such
one-parameter family defines a closed curve in the space of flat tori: after the
time t0 = log λu it closes up and follows itself.

Observation 2. Pseudo-Anosov diffeomorphisms define closed curves
(actually, closed geodesics) in the moduli spaces of Riemann surfaces.



Pseudo-Anosov diffeomorphisms

10 / 30

Consider eigenvectors "vu and "vs of the linear transformation A =

(

1 1
1 2

)

with eigenvalues λ = (3 +
√
5)/2 ≈ 2.6 and 1/λ = (3−

√
5)/2 ≈ 0.38.

Consider two transversal foliations on the original torus in directions "vu, "vs. We
have just proved that expanding our torus T2 by factor λ in direction "vu and
contracting it by the factor λ in direction "vs we get the original torus.

Definition. Surface automorphism homogeneously expanding in direction of
one foliation and homogeneously contracting in direction of the transverse
foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square
torus by a continuous deformation expanding with a factor et in directions "vu
and contracting with a factor et in direction "vs. By construction such
one-parameter family defines a closed curve in the space of flat tori: after the
time t0 = log λu it closes up and follows itself.

Observation 2. Pseudo-Anosov diffeomorphisms define closed curves
(actually, closed geodesics) in the moduli spaces of Riemann surfaces.



Pseudo-Anosov diffeomorphisms

10 / 30

Consider eigenvectors "vu and "vs of the linear transformation A =

(

1 1
1 2

)

with eigenvalues λ = (3 +
√
5)/2 ≈ 2.6 and 1/λ = (3−

√
5)/2 ≈ 0.38.

Consider two transversal foliations on the original torus in directions "vu, "vs. We
have just proved that expanding our torus T2 by factor λ in direction "vu and
contracting it by the factor λ in direction "vs we get the original torus.

Definition. Surface automorphism homogeneously expanding in direction of
one foliation and homogeneously contracting in direction of the transverse
foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square
torus by a continuous deformation expanding with a factor et in directions "vu
and contracting with a factor et in direction "vs. By construction such
one-parameter family defines a closed curve in the space of flat tori: after the
time t0 = log λu it closes up and follows itself.

Observation 2. Pseudo-Anosov diffeomorphisms define closed curves
(actually, closed geodesics) in the moduli spaces of Riemann surfaces.



Pseudo-Anosov diffeomorphisms

10 / 30

Consider eigenvectors "vu and "vs of the linear transformation A =

(

1 1
1 2

)

with eigenvalues λ = (3 +
√
5)/2 ≈ 2.6 and 1/λ = (3−

√
5)/2 ≈ 0.38.

Consider two transversal foliations on the original torus in directions "vu, "vs. We
have just proved that expanding our torus T2 by factor λ in direction "vu and
contracting it by the factor λ in direction "vs we get the original torus.

Definition. Surface automorphism homogeneously expanding in direction of
one foliation and homogeneously contracting in direction of the transverse
foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square
torus by a continuous deformation expanding with a factor et in directions "vu
and contracting with a factor et in direction "vs. By construction such
one-parameter family defines a closed curve in the space of flat tori: after the
time t0 = log λu it closes up and follows itself.

Observation 2. Pseudo-Anosov diffeomorphisms define closed curves
(actually, closed geodesics) in the moduli spaces of Riemann surfaces.



Space of lattices

11 / 30

• By a composition of homothety and
rotation we can place the shortest
vector of the lattice to the horizontal
unit vector.



Space of lattices

11 / 30

• By a composition of homothety and
rotation we can place the shortest
vector of the lattice to the horizontal
unit vector.
• Consider the lattice point
closest to the origin and
located in the upper
half-plane.



Space of lattices

11 / 30

• By a composition of homothety and
rotation we can place the shortest
vector of the lattice to the horizontal
unit vector.
• Consider the lattice point
closest to the origin and
located in the upper
half-plane.
• This point is located
outside of the unit disc.



Space of lattices

11 / 30

• By a composition of homothety and
rotation we can place the shortest
vector of the lattice to the horizontal
unit vector.
• Consider the lattice point
closest to the origin and
located in the upper
half-plane.
• This point is located
outside of the unit disc.
• It necessarily lives inside
the strip −1/2 ≤ x ≤ 1/2.
We get a fundamental domain in the space of lattices, or, in other words, in the
moduli space of flat tori.



Moduli space of tori
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neighborhood of a
cusp = subset of
tori having short
closed geodesic

The corresponding modular surface is not compact: flat tori representing
points, which are close to the cusp, are almost degenerate: they have a very
short closed geodesic. It also have orbifoldic points corresponding to tori with
extra symmetries.
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Identifying the opposite sides of a regular octagon we get a flat surface of
genus two. All the vertices of the octagon are identified into a single conical
singularity. We always consider such a flat surface endowed with a
distinguished (say, vertical) direction. By construction, the holonomy of the flat
metric is trivial. Thus, the vertical direction at a single point globally defines
vertical and horizontal foliations.
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The group SL(2,R) acts on the each spaceH1(d1, . . . , dn) of flat surfaces of
unit area with conical singularities of prescribed cone angles 2π(di + 1). This
action preserves the natural measure on this space. The diagonal subgroup
(

et 0
0 e−t

)

⊂ SL(2,R) induces a natural flow onH1(d1, . . . , dn) called the

Teichmüller geodesic flow.

Keystone Theorem (H. Masur; W. A. Veech, 1992). The action of the groups

SL(2,R) and
(

et 0
0 e−t

)

is ergodic with respect to the natural finite measure

on each connected component of every spaceH1(d1, . . . , dn).
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Theorem of Masur and Veech claims that taking at random an octagon as
below we can contract it horizontally and expand vertically by the same factor
et to get arbitrary close to, say, regular octagon.

−→
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There is no paradox since we are allowed to cut-and-paste!
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Theorem of Masur and Veech claims that taking at random an octagon as
below we can contract it horizontally and expand vertically by the same factor
et to get arbitrary close to, say, regular octagon.

−→ =

The first modification of the polygon changes the flat structure while the second
one just changes the way in which we unwrap the flat surface.
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Asymptotic cycle for a torus
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Consider a leaf of a measured foliation on a surface. Choose a short
transversal segmentX . Each time when the leaf crossesX we join the
crossing point with the point x0 alongX obtaining a closed loop. Consecutive
return points x1, x2, . . . define a sequence of cycles c1, c2, . . . .

The asymptotic cycle is defined as limn→∞

cn
n

= c ∈ H1(T2;R).

Theorem (S. Kerckhoff, H. Masur, J. Smillie, 1986.) For any flat surface
directional flow in almost any direction is uniquely ergodic.

This implies that for almost any direction the asymptotic cycle exists and is the
same for all points of the surface.
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18 / 30

Consider a model case of the foliation in direction of the expanding eigenvector

"vu of the Anosov map g : T2 → T2 withDg = A =

(

1 1
1 2

)

. Take a closed

curve γ and apply to it k iterations of g. The images g(k)∗ (c) of the
corresponding cycle c = [γ] get almost collinear to the expanding eigenvector
"vu of A, and the corresponding curve g(k)(γ) closely follows our foliation.

The first return cycles to a short subinterval exhibit exactly the same behavior
by a simple reason that they are images of the first return cycles to a longer
subinterval under a high iteration of g.

Direction of the expanding
eigenvector "vu of A = Dg
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Consider a model case of the foliation in direction of the expanding eigenvector
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"vu of A, and the corresponding curve g(k)(γ) closely follows our foliation.

The first return cycles to a short subinterval exhibit exactly the same behavior
by a simple reason that they are images of the first return cycles to a longer
subinterval under a high iteration of g.

First return cycle ci(g(X)) to g(X) is g∗(ci(X))

X
c1

c2

c3

X



Asymptotic flag: empirical description
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cN

H1(S;R) + R2g

x1
x2

x3

x4

x5

x2g
To study a deviation of cycles
cN from the asymptotic cycle
consider their projections
to an orthogonal hyperscreen

Direction of the
asymptotic cycle

S
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cN

H1(S;R) + R2g

x1
x2

x3

x4

x5

x2g
The projections accumulate
along a straight line
inside the hyperscreen

Direction of the
asymptotic cycle

S
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cN

H1(S;R) + R2g

x1
x2

x3

x4

x5

x2g

Asymptotic plane L2

Direction of the
asymptotic cycle

S
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cN

‖cN‖λ2

‖cN‖λ3

H1(S;R) + R2g

x1
x2

x3

x4

x5

x2g

Asymptotic plane L2

Direction of the
asymptotic cycle

S



Asymptotic flag
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Theorem (A. Z. , 1999) For almost any surface S in any stratum
H1(d1, . . . , dn) there exists a flag of subspaces
L1 ⊂ L2 ⊂ · · · ⊂ Lg ⊂ H1(S;R) such that for any j = 1, . . . , g − 1

lim sup
N→∞

log dist(cN , Lj)

logN
= λj+1

and
dist(cN , Lg) ≤ const,

where the constant depends only on S and on the choice of the Euclidean
structure in the homology space.
The numbers 1 = λ1 > λ2 > · · · > λg are the top g Lyapunov exponents of
the Hodge bundle along the Teichmüller geodesic flow on the corresponding
connected component of the stratumH(d1, . . . , dn).

The strict inequalities λg > 0 and λ2 > · · · > λg, and, as a corollary, strict
inclusions of the subspaces of the flag, are difficult theorems proved later by
Forni (2002) and A. Avila–M. Viana (2007).
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Consider a natural vector bundle over the stratum with a fiberH1(S;R) over a
“point” (S, ω), called the Hodge bundle. It carries a canonical flat connection
called Gauss—Manin connection: we have a latticeH1(S;Z) in each fiber,
which tells us how we can locally identify the fibers. Thus, Teichmüller flow on
H1(d1, . . . , dn) defines a multiplicative cocycle acting on fibers of this bundle.

The monodromy matrices of this cocycle are symplectic which implies that the
Lyapunov exponents are symmetric:

λ1 ≥ λ2 ≥ · · · ≥ λg ≥ −λg ≥ · · · ≥ −λ2 ≥ −λ1
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Theorem (A. Eskin, M. Kontsevich, A. Z., 2014) The Lyapunov exponents
λi of the Hodge bundleH1

R
along the Teichmüller flow restricted to an

SL(2,R)-invariant suborbifold L ⊆ H1(d1, . . . , dn) satisfy:

λ1 + λ2 + · · ·+ λg =
1

12
·

n
∑

i=1

di(di + 2)

di + 1
+

π2

3
· carea(L) .

The proof is based on the initial Kontsevich formula + analytic Riemann-Roch
theorem + analysis of det∆flat under degeneration of the flat metric.

Theorem (A. Eskin, H. Masur, A. Z., 2003) For L = H1(d1, . . . , dn) one has

carea(H1(d1, . . . , dn)) =
∑

Combinatorial types
of degenerations

(explicit combinatorial factor)·

·
∏k

j=1VolH1(adjacent simpler strata)
VolH1(d1, . . . , dn)

.
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Fantastic Theorem (A. Eskin, M. Mirzakhani, A. Mohammadi, 2014). The
closure of any SL(2,R)-orbit is a suborbifold. In period coordinates any
SL(2,R)-suborbifold is represented by an affine subspace.
Any ergodic SL(2,R)-invariant measure is supported on a suborbifold. In
period coordinates this suborbifold is represented by an affine subspace, and
the invariant measure is just a usual affine measure on this affine subspace.

Developement (A. Wright, 2014) Effective methods of construction of orbit
closures.

Theorem (J. Chaika, A. Eskin, 2014). For any given flat surface S almost all
vertical directions define a Lyapunov-generic point in the orbit closure of SL(2,R) · S.

Solution of the generalized windtree problem (V. Delecroix–A. Z., 2015).
Notice that any “windtree flat surface” S is a cover of a surface S0 in the
hyperelliptic locus L in genus 1, and that the cycles h and v are induced from
S0. Prove that the orbit closure of S0 is L. Using the volumes of the strata in
genus zero, compute carea(L). Using the formula for

∑

λi compute λ1.
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• Study and classify all GL(2,R)-invariant suborbifolds inH(d1, . . . , dn).
(M. Mirzakhani and A. Wright have recently found SL(2,R)-invariant
subvarieties of absolutely mysterious origin.)
• Study extremal properties of the “curvature” of the Lyapunov subbundles
compared to holomorphic subbundles of the Hodge bundle. Estimate the
individual Lyapunov exponents.
• Prove conjectural formulae for asymptotics of volumes, and of Siegel–Veech
constants when g → ∞. (Partial results are already obtained by
D. Chen–M. Möller–D. Zagier, 2015–, and by A. Eskin and A. Z. , 2015–)
• Express carea(L) in terms of an appropriate intersection theory (in the spirit
of ELSV-formula for Hurwitz numbers or Mirzakhani formula for WP-volumes).
• Study dynamics of the Hodge bundle over other families of compact varieties
(some experimental results for families of Calabi–Yau varieties are recently
obtained by M. Kontsevich; some results for families of K3 surfaces were
obtained by S. Filip). Are there other dynamical systems, which admit
renormalization leading to dynamics on families of complex varieties?
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D. Chen–M. Möller–D. Zagier, 2015–, and by A. Eskin and A. Z. , 2015–)
• Express carea(L) in terms of an appropriate intersection theory (in the spirit
of ELSV-formula for Hurwitz numbers or Mirzakhani formula for WP-volumes).
• Study dynamics of the Hodge bundle over other families of compact varieties
(some experimental results for families of Calabi–Yau varieties are recently
obtained by M. Kontsevich; some results for families of K3 surfaces were
obtained by S. Filip). Are there other dynamical systems, which admit
renormalization leading to dynamics on families of complex varieties?



Challenges and open directions

29 / 30

• Study and classify all GL(2,R)-invariant suborbifolds inH(d1, . . . , dn).
(M. Mirzakhani and A. Wright have recently found SL(2,R)-invariant
subvarieties of absolutely mysterious origin.)
• Study extremal properties of the “curvature” of the Lyapunov subbundles
compared to holomorphic subbundles of the Hodge bundle. Estimate the
individual Lyapunov exponents.
• Prove conjectural formulae for asymptotics of volumes, and of Siegel–Veech
constants when g → ∞. (Partial results are already obtained by
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Varvara Stepanova. Joueurs de billard. Thyssen Museum, Madrid
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