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Overview

We want to consider certain measures that were originally introduced in the context of
Fractals, such as the Sierpiński Triangle.

These are the classical Kusuoka measures.

However, such fractal sets are naturally coded by spaces of sequences Σ = {1, 2, 3}Z+ .

The Kusuoka measures are more conveniently viewed as measures on Σ.

The bad news is that these measures are not classical Gibbs (or Equilibrium) measures. In
particular, the potential function is highly discontinuous.

Thus we are dealing with a non-standard (and possibly interesting ?) class of shift invariant
measures on Σ.

The good news is that traditional results still hold (e.g., exponential mixing, central limit
theorems, etc.)

However, a somewhat different approach has to be introduced in the proof.
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A little context

In the first talk of the conference by Keith Burns on Monday morning, he spoke about Gibbs
measures (equilibrium states) for non-uniformly hyperbolic systems (geodesic flows) and regular
(Hölder continuous) potential

and again in the talk of Yuri Lima on Tuesday.

In this talk we will discuss Gibbs measures for a very simple uniformly hyperbolic system and
non-Hölder continuous (discontinuous) potentials.
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non-Hölder continuous (discontinuous) potentials.

Mark Pollicott Ergodic Properties of the Kusuoka measure 3 / 23



A little context

In the first talk of the conference by Keith Burns on Monday morning, he spoke about Gibbs
measures (equilibrium states) for non-uniformly hyperbolic systems (geodesic flows) and regular
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Introduction
To begin, consider a familiar fractal object: the Sierpiński triangle X .

Replace a triangle in the plane by the three triangles of half the size in the corners.

We can then to the same for each of these three triangles.

We continue this process iteratively to get the “fractal” X .
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Waclaw Sierpiński

Waclaw Sierpiński (1882-1969) was a distinguished polish number theorist and set theorist.

In 1951 the Warsaw Scientific Society issued a medal in his honour.
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Replacing the Sierpiński Triangle X by a space of sequences Σ

We can code X using sequences from Σ = {1, 2, 3}Z+ in the time honoured way.

More precisely,

We can define a metric on Σ by

d ((xn)
∞
n=0, (yn)

∞
n=0) =

∞X

n=0

e (xn, yn)

2n
where e(i , j) =

(
1 if i �= j

0 if i = j

We can define a (Hölder continuous) coding π : Σ → X by

π ((xn)
∞
n=0) =

∞X

n=0

exn

2n
.

where e1 = (0, 0), e2 = (1, 0) and e3 =
“

1
2 ,
√

3
2

”
, say.

We can introduce some dynamics by σ : Σ → Σ the usual shift map given by

σ(xn)
∞
n=0 = (xn+1)

∞
n=0.

(This essentially corresponds to a map on X which doubles distances).
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Measures

The coding gives a convenient viewpoint for studying probability measures on X , by considering
measures on Σ. Recall that µ is σ-invariant if

µ([x0, · · · , xn−1]) =
3X

i=1

µ([i , x0, · · · , xn−1])

for all cylinders [x0, · · · , xn−1] := {y = (yn)∞n=0 ∈ Σ : xj = yj for 0 ≤ j ≤ n − 1} where
x0, · · · , xn−1 ∈ {1, 2, 3}.

Example (Most obvious example)

The ( 1
3 , 1

3 , 1
3 )-Bernoulli measure on Σ satisfies µ([x0, · · · , xn−1]) = 1

3n and corresponds to the
“natural” measure on X .

Similarly, one could take Gibbs measures (for Hölder potentials ψ : Σ → R).

Definition

A σ-invariant measure µ is a Gibbs measure (for the potential log ψ) if

ψ(x) = lim
n→+∞

µ[x0, · · · , xn]

µ[x1, · · · , xn]

satisfies that ψ : Σ → R is Hölder continuous.
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Classical examples

Example (Obvious example revisited)

If µ is the ( 1
3 , 1

3 , 1
3 )-Bernoulli measure on Σ then µ[x0, · · · , xn−1] = 1

3n and log ψ(x) = − log 3 is
a constant function.

Example (Next most obvious example)

If µ is the (p1, p2, p3)-Bernoulli measure on Σ (with p1 + p2 + p3 = 1) then
µ([x0, · · · , xn−1]) = px0px1 · · · pxn−1 and for x = (xn)∞n=0:

log ψ(x) =

8
><

>:

log p1 if x0 = 1

log p2 if x0 = 2

log p3 if x0 = 3

is a locally constant function.

More generally, in the standard Gibbs theory approach one likes the potential log ψ to be Hölder
continuous.

However, the Kusuoka measure is defined in a different sort of way and has a different kind of
potential . . .
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Kusuoka measure
The Kusuoka measure was originally defined on the Sierpiński triangle X, but to describe the
corresponding measure µ on Σ we want to specify the measure of cylinder sets

[i0, · · · , in−1] = {x = (xk )∞k=0 : xj = ij for 0 ≤ j ≤ n − 1}, for i0, · · · , in−1 ∈ {1, 2, 3}.

For concreteness, let us begin with the classical case.

Definition (Classical Kusuoka measure)

Let A1 =

 
3√
15

0

0 1√
15

!
, A2 =

√
5

2

 √
3

5
1
5

1
5

1√
3

!
and A3 =

√
5

2

 √
3

5 − 1
5

− 1
5

1√
3

!
.

Let E =

„ 1
2 0
0 1

2

«
.

We define

µ([i0, · · · , in−1]) = trace
“
(Ai0 · · ·Ain−1 )

TE(Ai0 · · ·Ain−1 )
”

for i0, · · · , in−1 ∈ {1, 2, 3}

The measure µ is well defined (by explicit computation).

The measure µ is σ-invariant (by explicit computation).

Theorem (Kusuoka, 1989)

The measure µ is ergodic.

The corresponding measure on X is important in defining the “Laplacian” on the fractal.
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The measure µ is σ-invariant (by explicit computation).

Theorem (Kusuoka, 1989)

The measure µ is ergodic.

The corresponding measure on X is important in defining the “Laplacian” on the fractal.
Mark Pollicott Ergodic Properties of the Kusuoka measure 9 / 23



The potential for the Kusuoka measure
We can attempt to define the “potential”

ψ(x) = lim
n→+∞

µ[x0, · · · , xn]

µ[x1, · · · , xn]
.

If ψ : Σ → R were Hölder continuous then we could apply general ideas from “theormodynamical
formalism”.

However, this is far from being Hölder continuous.

Theorem (Bell-Ho-Strichartz, 2014)

There exist a dense set of discontinuities for ψ(x).

Despite this, it is possible to establish familiar ergodic properties
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Main result
We can prove stronger ergodic results, such as exponential mixing:

Theorem (Johansson-Öberg-P.)

The measure µ mixed exponentially fast, i.e., there exists 0 < α < 1 such that for Lipschitz
f1, f2 : Σ → R we can find C > 0 with

˛̨
˛̨
Z

f1 ◦ σn.f2dµ−
Z

f1dµ.

Z
f2dµ

˛̨
˛̨ ≤ Cαn

In fact, α isn’t very mysterious - we can take any value 5
7 < α < 1.

Anders Öberg and Anders Johansson (explaining something very patiently to a coauthor)
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Applications: Summary

The ergodicity of the Kusuoka measure gives the

Theorem (Birkhoff ergodic theorem)

For any f ∈ L1(Σ, µ) we have that for a.e. (µ) x ∈ Σ, limn→+∞
1
n

Pn−1
k=0 f (σkx) =

R
fdµ.

The Birkhoff Ergodic Theorem was mentioned in the talk of Corinna Ulcigrai. Our result leads to
various strengthenings via stronger statistical results under the stronger assumption that
f : Σ → R is Lipschitz.

For example,

1 Central Limit Theorems

2 Large Deviation Theorems

3 Pointwise error terms in the Birkhoff ergodic theorem.
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1. Central Limit Theorems

As we observed, ergodicity of the measure µ implies that:

Theorem (Birkhoff Ergodic Theorem)

For any L1(Σ, µ) function f : Σ → R we have that

1

N

N−1X

n=0

f (σnx) →
Z

fdµ as N → +∞,

for a.e.(µ) x ∈ Σ.

The central limit theorem gives stronger results where 1/N is replaced by 1/
√

N.

Theorem (Central Limit Theorm)

Assume f : Σ → R is a Lipschitz function not cohomologous to a constant (i.e.,
f −

R
fdµ = u ◦ σ − u where u ∈ B). Then there exists σ2 > 0 such that we have that for any

α < β we have

µ

 (
x ∈ Σ : α ≤

1
√

N

N−1X

n=0

f (σnx)−
Z

fdµ ≤ β

)!
→

1
√

2πσ

Z β

α
e−σ2u2/2du

as N → +∞.
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2. Large Deviation results

Recall that:

Theorem (Birkhoff Ergodic Theorem)

For any L1(Σ, µ) function f : Σ → R we have that

1

N

N−1X

n=0

f (σnx) →
Z

fdµ as N → +∞,

for a.e.(µ) x ∈ Σ.

Another form of generalisation of the Birkhoff theorem is the following.

Theorem (Large Deviation Theorem)

Let f : Σ → R be Lipschitz. For each � > 0 there exists C > 0, 0 < ρ < 1 such that

µ

 (
x ∈ Σ :

˛̨
˛̨
˛
1

N

N−1X

n=0

f (σnx)−
Z

fdµ

˛̨
˛̨
˛ > �

)!
≤ Cρn

as N → +∞.

There is also be a corresponding version for measures 1
N

PN−1
n=0 δσnx .
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3. Error terms for Birkhoff Ergodic Theorem
Recall yet again that:

Theorem (Birkhoff Ergodic Theorem)

For any L1(Σ, µ) function f : Σ → R we have that

1

N

N−1X

n=0

f (σnx) →
Z

fdµ as N → +∞,

for a.e.(µ) x ∈ Σ.

The following is a simple consequence of the mixing.

Theorem (Error terms)

Let f : Σ → R be Lipschitz. We can deduce that, for any δ > 0 can write

1

N

N−1X

n=0

f (σnx) =

Z
fdµ + O

 
(log N)3/2(log log N)1/2(log log log N)1/2+δ

N1/2

!
.

In particular, for any � > 0 can write

1

N

N−1X

n=0

f (σnx) =

Z
fdµ + O

„
1

N1/2−�

«
.
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The strategy of the proof

Let us define a function g : X → R by

ψ(x) = lim
n→+∞

µ[x0, · · · , xn−1]

µ[x1, · · · , xn−1]
for a.e.(µ)x = (xn)

∞
n=0 ∈ Σ.

As we observed, if µ were a classical Gibbs measure then ψ(x) would be Hölder continuous, but
alas it has a dense set of discontinuities. Despite µ not being a classical Gibbs measure, we show
that on a suitable space B of functions the associated Transfer Operator L : B → B defined by

Lf (x) =
X

σy=x

ψ(y)f (y), f ∈ B,

still has a “spectral gap”.

Then using
R

(f1 ◦ σn)f2dµ =
R

f1(Lnf2)dµ the result follows as usual.

Thus we need

to define a suitable B; and

to prove there is a spectral gap for L.
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The space of functions B

Let An (n ≥ 0) be the finite sigma algebra consisting of all cylinders [i0, · · · , in−1] of length n
(N.B. those traditionally used in the definition of entropy).

Let E(·|An) : L2(X ,B, µ) → L2(X ,B, µ) be the usual expectation projection, i.e.,

E(f |An)(x) =

R
[x0,·,xn−1] fdµ

µ[x0, · · · , xn−1]
, where x = (xn)

∞
n=0,

is a locally constant approximation depending on the first n-coordinates.

Given 0 < θ < 1, let

B = Bθ :=

(
f : �f �2θ :=

∞X

n=1

�E(f |An)− E(f |An−1)�22
θn

< +∞
)

with norm �f � = �f �2 + �f �θ.

Providing θ > 1
2 we have that B contains the Lipschitz functions.
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The spectrum and an indirect approach

There is an operator theorem has a reassuringly familiar statement

Theorem

For 0 < θ < 1 sufficiently large, L : B → B defined by Lf (x) =
P

σy=x g(y)f (y) is well defined.
Moreover,

L(1) = 1 (i.e., preserves the constant functions C)

The spectral radius of L : B/C → B/C is strictly smaller than 1

In particular, there is a spectral gap, as required.

One might hope that a “traditional approach” would lead to the results on the spectrum of L
(e.g., Lasota-Yorke inequality, etc.).

Unfortunately, we couldn’t get that to work - so there is a more indirect approach working with
Banach spaces of matrix valued functions, and operators on these (which then project down to
operators on functions of the above form).
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Banach spaces of matrix valued functions, and operators on these (which then project down to
operators on functions of the above form).
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Generalizations
The Kusuoka measure is a special case of a more general class of invariant measures on Σ.

Given any full shift Σ = {1, · · · , k}Z+ assume that we have:

d × d matrices A1, · · · , Ak ; and

a positive definite d × d smatrix E,

(for some d ≥ 1) which satisfy

kX

i=1

AiA
T
i = I and

kX

i=1

AT
i EAi = I .

and a strong irreducibility condition. We can define a (generalized) Kusuoka measure on Σ using

µ([i0, · · · , in−1]) = trace
“
(Ai0 · · ·Ain−1 )

TE(Ai0 · · ·Ain−1 ).
”

.

This is well defined and invariant under the shift σ : Σ → Σ.

Theorem (Johansson-Öberg-P.)

The measure µ mixed exponentially fast, i.e., there exists 0 < α < 1 such that for Lipschitz
f1, f2 : Σ → R we can find C > 0 with

˛̨
˛̨
Z

f1 ◦ σn.f2dµ−
Z

f1dµ.

Z
f2dµ

˛̨
˛̨ ≤ Cαn
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Aside: The origins of the Kusuoka measusre

Question

Why was the Kusuoka measure introduced?

( 1
2 ,
√

3
2 )

(0, 0) (1, 0)

v (i)
1

v (i)
2v (i)

3

The Kusuoka measure µ arises naturally in the construction of a “laplacian” on function on X ,
via energy and harmonic functions.

Definition

Given u ∈ C0(X , R) we define the energy in terms of the values on smaller triangles (with vertices

v (i)
1 , v (i)

2 , v (i)
3 corresponding to cylinders [i ] = [i0, · · · , in−1]) in graphs approximating the fractal

X .

E(u) := lim
n→+∞

X

i∈{1,2,3}n

X

1≤r<s≤3

“
u
“
v (i)
r

”
− u

“
v (i)
s

””2
∈ [0, +∞]

and E(u, v) = 1
4 (E(u + v)− E(u − v)) for u, v ∈ C0(X , R)
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Harmonic functions and Harmonic measures

We need to define analogues of harmonic functions and measures on the Sierpiński triangle X .

Definition

Specifying the three values

u(0, 1), u(1, 0), u

 
1

2
,

√
3

2

!
∈ R

there is a unique function u ∈ C(X , R) achieving these three values and minimizing E(u).
This is called a harmonic function.

If we quotient out by the constants, the space of harmonic functions is two dimensional.

Definition

We can associated to a harmonic function u ∈ C(X , R)/R a harmonic measure νu on X by

νu(π([i0, · · · , in−1])) =

„
5

3

«n

E(u ◦ π(i0, · · · , in−1, x0, x1, · · · ))

where i0, · · · , in−1 ∈ {1, 2, 3}n.
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The Kusuoka measure and the laplacian

Finally, fix a basis u1, u2 for harmonic functions satisfying E(u1, u2) = 0 and E(u1) = E(u2) = 1.

Definition (Alternative equivalent definition of Kusuoka measure)

The measure µ = νu1 + νu2 .

This is then used to define a laplacian.

Definition

One defines a Laplacian ∆ on suitable functions f1 ∈ C(X , R) by

Z
(∆f1)f2dµ = −E(f1, f2)

for suitable f2 ∈ C(X , R).

In particular, the Kusuoka measure gives the Laplacian desirable properties (that wouldn’t happen
with the Bernoulli measure, say). For example,

Lemma

If ∆f ∈ L2(µ) then ∆(f 2) ∈ L2(µ).
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The end

Thank you for your time and attention
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