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o Wandering domains: trivial/non-trivial examples
e Colli & Vargas' example

e Existence of non-trivial wandering domain (Conjecture of
Colli & Vargas)

e An answer to Takens' Last Problem

e An answer to van Strien's question
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What is a wandering domain?

M: compact smooth manifold

Definition

D is a wandering domain for f € Diff" (M) if
@ D : nonempty, connected, open set of M
@ fYYD)N fI(D) =@ for Vi,J € Z with i £ j




Trivial example
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Non-trivial example

[BohlL(1916), Denjoy(1932)]
3f € Diff'(S?), 3{Ds}ien C S* with (D) = Diy1 s.t.
@ rotation number of f is irrational;
@ DN D; =@ for Vi, 7 € N with 1 # 7;
o A:= S\ U Int(Dyp) is a f-invariant Cantor set
satisfying ;\eNz wp.

Note: Vf € Diff?(S2) has no wandering domain o



Definition (de Melo & van Strien)

For a circle diffeomorphism f, an open interval in St is a
non-trivial wandering domain
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Definition (de Melo & van Strien)

For a circle diffeomorphism f, an open interval in St is a
non-trivial wandering domain if

e D, f(D), f2(D), ... are pairwise disjoint;
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Definition (de Melo & van Strien)

For a circle diffeomorphism f, an open interval in St is a
non-trivial wandering domain if

e D, f(D), f2(D), ... are pairwise disjoint;

@ the w-Limit set of D is not equal to a single periodic
orbit.
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B¢({p})

sink

Bf(A) :={x € M; f"(x) > Aasn — o0}



Br({p})

sink

Bf(A) :={x € M; f"(x) > Aasn — o0}
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(dissipative) saddle-node
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In 2-dimension

Let M: closed surface and f € Diff"(M). An open set
D C M is a non-trivial wandering domain if
o f{(D)N fI(D) # 0 if i # 7
@ the w-Limit set of D is not equal to a single periodic
orbit.
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In 2-dimension

Definiti 2
Let M: closed surface and f € Diff"(M). An open set
D C M is a non-trivial wandering domain if

e fY(D) N fI(D) # O if © # 3;

0 thew-timit setof D-isnotequalt-toasingte periodic
orbit:

attracting irrational rotation
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f € Diff"(S?) with
@ sink po;
@ horseshoe A;

@ source Poo
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f € Diff"(S52) with
@ Sink Dpo;
@ horseshoe A;

@ source Pco

YD) N fI(D) = 0 if i # 3;
D C basin of pg => Wwp = {Po};
Lim diam(f™*(D)) — 0
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f € Diff"(S52) with
@ Sink Dpo;
@ horseshoe A;

@ source Pco

fH(D)N (D) =0 if i # 3,
DCR\f(R) = wp={po}UNA,;
Lim diam(f*(D)) =c >0
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Non-trivial wandering domains in 2-dimension

M : closed surface

Definition

A nonempty connected open set D in M is a non-trivial
wandering domain for f € Diff" (M) if
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Non-trivial wandering domains in 2-dimension

M : closed surface

Definition

A nonempty connected open set D in M is a non-trivial
wandering domain for f € Diff" (M) if

e fY(D) N fI(D) = @ for any 4,7 € Z with i # 7;

25



Non-trivial wandering domains in 2-dimension

M : closed surface
Definition
A nonempty connected open set D in M is a non-trivial
wandering domain for f € Diff" (M) if
e fY(D)N fI(D) = @ for any 4,5 € Z with 1 # 7;
@ there is a non-trivial basic set A
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Non-trivial wandering domains in 2-dimension

M : closed surface
Definition
A nonempty connected open set D in M is a non-trivial
wandering domain for f € Diff" (M) if
e fY(D)N fI(D) = @ for any 4,5 € Z with 1 # 7;
@ there is a non-trivial basic set A such that, for any
T € D, the w-Limit set w(x) contains A.
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Non-trivial wandering domains in 2-dimension

M : closed surface

Definition
A nonempty connected open set D in M is a non-trivial
wandering domain for f € Diff" (M) if
e fY(D)N fI(D) = @ for any 4,5 € Z with 1 # 7;
@ there is a non-trivial basic set A such that, for any
T € D, the w-Limit set w(x) contains A.

Definition

A non-trivial wandering domain D is called contracting if
the diameter of f™(D) converges to zero as n — o0
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Smale horseshoe map

f € Diff"(S2?) with
@ sink po;
@ horseshoe A;
@ source Peo

There are trivial wandering domains but no non-trivial ones.
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horseshoe & homoclinic tangency

Does there exist a diffeomorphism having non-trivial
wandering domains?
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horseshoe & homoclinic tangency

Does there exist a diffeomorphism having non-trivial
wandering domains?
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Colli-Vargas' example
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Colli-Vargas' example
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Colli-Vargas' example

TS7 > 1



Colli-Vargas' example




Colli-Vargas' example

Jko € N s.t. ff(Dg) N By, # &
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Colli-Vargas' example
m o ’ §;~;§e‘rturbation
/

center of fg“ll(Do) = center of B,
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Colli-Vargas' example

D1 C Gi,, D10 52 (Do) # 2

38



Colli-Vargas' example

FEH(D1) N By # @
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Colli-Vargas' example

[ J
Do — D1 —» D»
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Colli-VVargas' example




Colli-Vargas' example

Gis

Q—*;Af )

[Colli-Vargas '01]

There exists a 2-dimensional C", r > 2, diffeomorphism
having a contracting non-trivial wandering domain




Colli-Vargas' example

[Colli-Vargas '01]

There exists a 2-dimensional C", r > 2, diffeomorphism
having a contracting non-trivial wandering domain whose
w-Limit set is contained in the horseshoe A with its

homoclinic tangencies.

43



44



M: closed surface
f € Diff"(M), r > 2, with

@ saddle fixed point p;
@ homoclinic tangency for p
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M: closed surface
f € Diff"(M), r > 2, with

@ saddle fixed point p;
@ homoclinic tangency for p

3 open set Ny C Diff" (M)
s.t. f € CL(Ny) and Ny has
p persistent tangenvies.
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M: closed surface
f € Diff"(M), r > 2, with

@ saddle fixed point p;
@ homoclinic tangency for p

3 open set Ny C Diff" (M)
s.t. f € CL(Ny) and Ny has
p persistent tangenvies.

N dgU/\ff: Newhouse open set
f
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M: closed surface
f € Diff"(M), r > 2, with

@ saddle fixed point p;
@ homoclinic tangency for p

3 open set N/ C Diff" (M)
s.t. f € CL(Ny) and N has
p persistent tangenvies.

N dQCUJ\/}: Newhouse open set
f

Theorem A (Colli-Vargas' conjecture '01)
The Newhouse open set N/

48



M: closed surface
f € Diff"(M), r > 2, with

@ saddle fixed point p;
@ homoclinic tangency for p

3 open set N/ C Diff" (M)
s.t. f € CL(Ny) and N has
p persistent tangenvies.

N dQCUJ\/}: Newhouse open set
f

Theorem A (Colli-Vargas' conjecture '01)
The Newhouse open set N is contained in the closure of a
subset of Diff"(M), 2 < r < o0,
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M: closed surface
f € Diff"(M), r > 2, with

@ saddle fixed point p;
@ homoclinic tangency for p

3 open set N/ C Diff" (M)
s.t. f € CL(Ny) and N has
p persistent tangenvies.

N ngNf: Newhouse open set
f

Theorem A (Colli-Vargas' conjecture '01)

The Newhouse open set N is contained in the closure of a
subset of Diff"(M), 2 < r < 00, whose any diffeomorphism
has a contracting non-trivial wandering domains.
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Takens' Last Problem

X: compact state space
@ X — X: continuous map
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X: compact state space
@ X — X: continuous map

Definition

An orbit {z, ©(x), Y?(x), ...} has historic behavior if the
measure

n

1
= Oyi(g),
bom 1= g ;0 )

where dyi(z) is the Dirac measure on X supported at p*(x)




Takens' Last Problem

X: compact state space

@ X — X: continuous map

Definition

An orbit {z, ©(x), Y?(x), ...} has historic behavior if the
measure

n

1
= Oyi(g),
bom 1= g ;0 )

where dyi(z) is the Dirac measure on X supported at p*(x)
dose not converge in the weak topology as n — ©0.




Answer to Takens' Last Problem

Taknes' Last problem [Taknes 2008]

Whether are there persistent classes of smooth dynamical
systems such that
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Taknes' Last problem [Taknes 2008]

Whether are there persistent classes of smooth dynamical
systems such that the set of initial states which give rise to
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Answer to Takens' Last Problem

Taknes' Last problem [Taknes 2008]

Whether are there persistent classes of smooth dynamical
systems such that the set of initial states which give rise to
orbits with historic behavior has positive Lebesgue measure?

Theorem B (Answer to Takens’ Llast problem)

The Newhouse open set N C Diff"(M) has a dense subset
where any diffeomorphism f has a contracting non-trivial
wandering domain D
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Answer to Takens' Last Problem

Taknes' Last problem [Taknes 2008]

Whether are there persistent classes of smooth dynamical
systems such that the set of initial states which give rise to
orbits with historic behavior has positive Lebesgue measure?

Theorem B (Answer to Takens’ Llast problem)

The Newhouse open set N C Diff"(M) has a dense subset
where any diffeomorphism f has a contracting non-trivial
wandering domain D such that, for any *x € D, the forward
orbit of £ under f has historic behavior.
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An application to HéEnon maps

Hénon family fap : R2 — R?
fao(z,¥) = (1 — az?® + v, bx)

where a, b: real parameters
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An application to HéEnon maps

Pab
Hénon family fap : R2 — R?

fao(z,v) = (1 — az? + v, bz)

where a, b: real parameters

Open problem [van Strien '10], [Lyubich-Martens '11]

Does the Hénon family have a non-trivial wandering domain?
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An application to HéEnon maps

Pab
Hénon family fap : R2 — R?

fao(z,v) = (1 — az? + v, bz)

where a, b: real parameters

Open problem [van Strien '10], [Lyubich-Martens '11]
Does the Hénon family have a non-trivial wandering domain?

There is an open set © of the parameter space of HéEnon
family with CL(®) 3 (2,0) such that for every (a, b) € O,
fa b is approximated by C” diffeomorphisms, 2 < r < 00,
which have historic & non-trivial wandering domains.
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Thank you for your kind attention!

The paper can be downloaded from:

arXiv:1503.06258

or
ResearchGate

GN:*25400112
726400093
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