Takens' Last Problem and Existence of Non-trivial Wandering Domains

S. Kiriki* T. Soma[†]

*Tokai Univ. (Japan)

[†]Tokyo Metro. Univ. (Japan)

arXiv:1503.06258

Contents

- Wandering domains: trivial/non-trivial examples
- Colli & Vargas' example
- Existence of non-trivial wandering domain (Conjecture of Colli & Vargas)
- 4 An answer to Takens' Last Problem
- 5 An answer to van Strien's question

What is a wandering domain?

M: compact smooth manifold

Definition

D is a wandering domain for $f \in Diff^r(M)$ if

- D: nonempty, connected, open set of M
- $f^i(D) \cap f^j(D) = \emptyset$ for $\forall i, j \in \mathbb{Z}$ with $i \neq j$

What is a wandering domain?

M: compact smooth manifold

Definition

D is a wandering domain for $f \in Diff^r(M)$ if

- D: nonempty, connected, open set of M
- $f^i(D) \cap f^j(D) = \emptyset$ for $\forall i, j \in \mathbb{Z}$ with $i \neq j$

What is a wandering domain?

M: compact smooth manifold

Definition

D is a wandering domain for $f \in Diff^r(M)$ if

- D: nonempty, connected, open set of M
- $f^i(D) \cap f^j(D) = \emptyset$ for $\forall i, j \in \mathbb{Z}$ with $i \neq j$

Trivial example

[Bohl(1916), Denjoy(1932)]

 $\exists f \in \mathsf{Diff}^1(S^1), \ \exists \{D_i\}_{i \in \mathbb{N}} \subset S^1 \ \text{with} \ f(D_i) = D_{i+1} \ \text{s.t.}$

[Bohl(1916), Denjoy(1932)]

 $\exists f \in \text{Diff}^1(S^1), \ \exists \{D_i\}_{i \in \mathbb{N}} \subset S^1 \text{ with } f(D_i) = D_{i+1} \text{ s.t.}$

rotation number of f is irrational;

[Bohl(1916), Denjoy(1932)]

 $\exists f \in \text{Diff}^1(S^1), \ \exists \{D_i\}_{i \in \mathbb{N}} \subset S^1 \text{ with } f(D_i) = D_{i+1} \text{ s.t.}$

- rotation number of f is irrational;
- $D_i \cap D_j = \emptyset$ for $\forall i, j \in \mathbb{N}$ with $i \neq j$;

[Bohl(1916), Denjoy(1932)]

 $\exists f \in \text{Diff}^1(S^1), \ \exists \{D_i\}_{i \in \mathbb{N}} \subset S^1 \text{ with } f(D_i) = D_{i+1} \text{ s.t.}$

- rotation number of f is irrational;
- $D_i \cap D_j = \emptyset$ for $\forall i, j \in \mathbb{N}$ with $i \neq j$;
- $\Lambda := S^1 \setminus \bigcup_{i \in \mathbb{N}} \operatorname{Int}(D_n)$ is a f-invariant Cantor set satisfying $\Lambda = \omega_D$.

[Bohl(1916), Denjoy(1932)]

 $\exists f \in \text{Diff}^1(S^1), \ \exists \{D_i\}_{i \in \mathbb{N}} \subset S^1 \text{ with } f(D_i) = D_{i+1} \text{ s.t.}$

- rotation number of f is irrational;
- $D_i \cap D_j = \emptyset$ for $\forall i, j \in \mathbb{N}$ with $i \neq j$;
- $\Lambda := S^1 \setminus \bigcup_{i \in \mathbb{N}} \operatorname{Int}(D_n)$ is a f-invariant Cantor set satisfying $\Lambda = \omega_D$.

Note: $\forall f \in \text{Diff}^2(S^2)$ has no wandering domain

Definition (de Melo & van Strien)

For a circle diffeomorphism f, an open interval in S^1 is a non-trivial wandering domain if

- $D, f(D), f^2(D), \dots$ are pairwise disjoint;
- the ω -limit set of D is not equal to a single periodic orbit.

Definition (de Melo & van Strien)

For a circle diffeomorphism f, an open interval in S^1 is a non-trivial wandering domain if

- $D, f(D), f^2(D), \dots$ are pairwise disjoint;
- the ω -limit set of D is not equal to a single periodic orbit.

Definition (de Melo & van Strien)

For a circle diffeomorphism f, an open interval in S^1 is a non-trivial wandering domain if

- $D, f(D), f^2(D), \dots$ are pairwise disjoint;
- the ω -limit set of D is not equal to a single periodic orbit.

$$B_f(A) := \{x \in M; f^n(x) \to A \text{ as } n \to \infty\}$$

$$B_f(A) := \{x \in M; f^n(x) \to A \text{ as } n \to \infty\}$$

Definition?

Let M: closed surface and $f \in \text{Diff}^r(M)$. An open set $D \subset M$ is a non-trivial wandering domain if

- $f^i(D) \cap f^j(D) \neq \emptyset$ if $i \neq j$;
- the ω -limit set of D is not equal to a single periodic orbit.

Definition?

Let M: closed surface and $f \in \mathsf{Diff}^r(M)$. An open set $D \subset M$ is a non-trivial wandering domain if

- $f^i(D) \cap f^j(D) \neq \emptyset$ if $i \neq j$;
- the ω -limit set of D is not equal to a single periodic orbit.

Definition ?

Let M: closed surface and $f \in \mathsf{Diff}^r(M)$. An open set $D \subset M$ is a *non-trivial wandering domain* if

- $f^i(D) \cap f^j(D) \neq \emptyset$ if $i \neq j$;
- the ω -limit set of D is not equal to a single periodic orbit.

 $f \in \mathrm{Diff}^r(S^2)$ with

- sink p_0 ;
- horseshoe Λ;
- source p_{∞}

 $f \in \text{Diff}^r(S^2)$ with

- sink p_0 ;
- horseshoe Λ;
- ullet source p_{∞}

$$D \subset \text{ basin of } p_0 \implies \begin{array}{c} f^i(D) \cap f^j(D) = \emptyset \text{ if } i \neq j; \\ \omega_D = \{p_0\}; \\ \lim\limits_{n \to \infty} \operatorname{diam}(f^n(D)) \to 0 \end{array}$$

 $f \in \text{Diff}^r(S^2)$ with

- sink p_0 ;
- horseshoe Λ;
- ullet source p_{∞}

$$D \subset R \setminus f(R) \implies \begin{array}{c} f^{i}(D) \cap f^{j}(D) = \emptyset \text{ if } i \neq j,; \\ \omega_{D} = \{p_{0}\} \cup \Lambda; \\ \lim\limits_{n \to \infty} \operatorname{diam}(f^{n}(D)) = c > 0 \end{array}$$

M: closed surface

Definition

A nonempty connected open set D in M is a non-trivial wandering domain for $f \in \mathsf{Diff}^r(M)$ if

- $f^i(D) \cap f^j(D) = \emptyset$ for any $i, j \in \mathbb{Z}$ with $i \neq j$;
- there is a non-trivial basic set Λ such that, for any $x \in D$, the ω -limit set $\omega(x)$ contains Λ .

Definition

M: closed surface

Definition

A nonempty connected open set D in M is a non-trivial wandering domain for $f \in \mathsf{Diff}^r(M)$ if

- $f^i(D) \cap f^j(D) = \emptyset$ for any $i, j \in \mathbb{Z}$ with $i \neq j$;
- there is a non-trivial basic set Λ such that, for any $x \in D$, the ω -limit set $\omega(x)$ contains Λ .

Definition

M: closed surface

Definition

A nonempty connected open set D in M is a non-trivial wandering domain for $f \in \mathsf{Diff}^r(M)$ if

- $f^i(D) \cap f^j(D) = \emptyset$ for any $i, j \in \mathbb{Z}$ with $i \neq j$;
- there is a non-trivial basic set Λ such that, for any $x \in D$, the ω -limit set $\omega(x)$ contains Λ .

Definition

M: closed surface

Definition

A nonempty connected open set D in M is a non-trivial wandering domain for $f \in \mathsf{Diff}^r(M)$ if

- $f^i(D) \cap f^j(D) = \emptyset$ for any $i, j \in \mathbb{Z}$ with $i \neq j$;
- there is a non-trivial basic set Λ such that, for any $x \in D$, the ω -limit set $\omega(x)$ contains Λ .

Definition

M: closed surface

Definition

A nonempty connected open set D in M is a non-trivial wandering domain for $f \in \mathsf{Diff}^r(M)$ if

- $f^i(D) \cap f^j(D) = \emptyset$ for any $i, j \in \mathbb{Z}$ with $i \neq j$;
- there is a non-trivial basic set Λ such that, for any $x \in D$, the ω -limit set $\omega(x)$ contains Λ .

Definition

Smale horseshoe map

There are trivial wandering domains but no non-trivial ones.

horseshoe & homoclinic tangency

Question

Does there exist a diffeomorphism having non-trivial wandering domains?

horseshoe & homoclinic tangency

Question

Does there exist a diffeomorphism having non-trivial wandering domains?

 $\exists k_0 \in \mathbb{N} \text{ s.t. } f^{k_0}(D_0) \cap \mathbb{B}_{i_0} \neq \emptyset$

center of $f_{\delta_1}^{k_1}(\mathcal{D}_0)=$ center of \mathbb{B}_{i_0}

00 (5)

$$f_{\delta_1}^{k_1}(D_1) \cap \mathbb{B}_{i_1} \neq \emptyset$$

[Colli-Vargas '01]

There exists a 2-dimensional C^r , $r \geq 2$, diffeomorphism having a contracting non-trivial wandering domain whose ω -limit set is contained in the horseshoe Λ with its homoclinic tangencies.

[Colli-Vargas '01]

There exists a 2-dimensional C^r , $r \ge 2$, diffeomorphism having a contracting non-trivial wandering domain whose ω -limit set is contained in the horseshoe Λ with its homoclinic tangencies.

M: closed surface $f \in \mathsf{Diff}^{r}(M), \ r \geq 2$, with

- saddle fixed point p;
- ullet homoclinic tangency for p

$$\mathcal{N} \stackrel{\mathrm{def}}{=} igcup_f \mathcal{N}_f$$
: Newhouse open set

M: closed surface $f \in \text{Diff}^r(M), r \ge 2$, with

- saddle fixed point p;
- ullet homoclinic tangency for p

$$\mathcal{N} \stackrel{\mathsf{def}}{=} \bigcup_f \mathcal{N}_f$$
: Newhouse open set

M: closed surface $f \in \text{Diff}^r(M), r \ge 2$, with

- saddle fixed point p;
- ullet homoclinic tangency for p

$$\mathcal{N} \stackrel{\mathsf{def}}{=} \bigcup_f \mathcal{N}_f$$
: Newhouse open set

M: closed surface $f \in \text{Diff}^r(M), r \ge 2$, with

- saddle fixed point p;
- ullet homoclinic tangency for p

$$\mathcal{N} \stackrel{\text{def}}{=} \bigcup_{f} \mathcal{N}_{f}$$
: Newhouse open set

M: closed surface $f \in \text{Diff}^r(M), r \ge 2$, with

- ullet saddle fixed point p;
- ullet homoclinic tangency for p

 \exists open set $\mathcal{N}_f \subset \mathsf{Diff}^r(M)$ s.t. $f \in \mathsf{Cl}(\mathcal{N}_f)$ and \mathcal{N}_f has persistent tangenvies.

 $\mathcal{N} \stackrel{\text{def}}{=} \bigcup_{f} \mathcal{N}_{f}$: Newhouse open set

Theorem A (Colli-Vargas' conjecture '01)

The Newhouse open set N is contained in the *closure* of a subset of $Diff^{r}(M)$, $2 \le r < \infty$, whose any diffeomorphism has a contracting non-trivial wandering domains.

M: closed surface $f \in \text{Diff}^r(M), r \geq 2$, with

- ullet saddle fixed point p;
- ullet homoclinic tangency for p

 \exists open set $\mathcal{N}_f \subset \mathsf{Diff}^r(M)$ s.t. $f \in \mathsf{Cl}(\mathcal{N}_f)$ and \mathcal{N}_f has persistent tangenvies.

 $\mathcal{N} \stackrel{\text{def}}{=} \bigcup_{f} \mathcal{N}_{f}$: Newhouse open set

Theorem A (Colli-Vargas' conjecture '01)

The Newhouse open set \mathcal{N} is contained in the *closure* of a subset of $\operatorname{Diff}^r(M)$, $2 \leq r < \infty$, whose any diffeomorphism has a contracting non-trivial wandering domains.

M: closed surface $f \in \text{Diff}^r(M), r \geq 2$, with

- ullet saddle fixed point p;
- ullet homoclinic tangency for p

 \exists open set $\mathcal{N}_f \subset \mathsf{Diff}^r(M)$ s.t. $f \in \mathsf{Cl}(\mathcal{N}_f)$ and \mathcal{N}_f has persistent tangenvies.

 $\mathcal{N} \stackrel{\text{def}}{=} \bigcup_{f} \mathcal{N}_{f}$: Newhouse open set

Theorem A (Colli-Vargas' conjecture '01)

The Newhouse open set \mathcal{N} is contained in the *closure* of a subset of $\operatorname{Diff}^r(M)$, $2 \leq r < \infty$, whose any diffeomorphism has a contracting non-trivial wandering domains.

X: compact state space

 $\varphi: X \to X$: continuous map

Definition

An orbit $\{x, \varphi(x), \varphi^2(x), \dots\}$ has *historic behavior* if the measure

$$\mu_{x,n} := \frac{1}{n+1} \sum_{i=0}^n \delta_{\varphi^i(x)},$$

X: compact state space

 $\varphi: X \to X$: continuous map

Definition

An orbit $\{x, \varphi(x), \varphi^2(x), \dots\}$ has *historic behavior* if the measure

$$\mu_{x,n} := rac{1}{n+1} \sum_{i=0}^n \delta_{arphi^i(x)},$$

X: compact state space

 $\varphi: X \to X$: continuous map

Definition

An orbit $\{x, \varphi(x), \varphi^2(x), \dots\}$ has *historic behavior* if the measure

$$\mu_{x,n} := \frac{1}{n+1} \sum_{i=0}^n \delta_{\varphi^i(x)},$$

X: compact state space

 $\varphi: X \to X$: continuous map

Definition

An orbit $\{x, \varphi(x), \varphi^2(x), \dots\}$ has *historic behavior* if the measure

$$\mu_{x,n} := \frac{1}{n+1} \sum_{i=0}^n \delta_{\varphi^i(x)},$$

Taknes' last problem [Taknes 2008]

Whether are there *persistent classes* of smooth dynamical systems such that the set of initial states which give rise to orbits with historic behavior has *positive Lebesque measure?*

Theorem B (Answer to Takens' last problem)

Taknes' last problem [Taknes 2008]

Whether are there *persistent classes* of smooth dynamical systems such that the set of initial states which give rise to orbits with historic behavior has *positive Lebesque measure?*

Theorem B (Answer to Takens' last problem)

Taknes' last problem [Taknes 2008]

Whether are there *persistent classes* of smooth dynamical systems such that the set of initial states which give rise to orbits with historic behavior has *positive Lebesgue measure*?

Theorem B (Answer to Takens' last problem)

Taknes' last problem [Taknes 2008]

Whether are there *persistent classes* of smooth dynamical systems such that the set of initial states which give rise to orbits with <u>historic behavior</u> has *positive Lebesgue measure*?

Theorem B (Answer to Takens' last problem)

Taknes' last problem [Taknes 2008]

Whether are there *persistent classes* of smooth dynamical systems such that the set of initial states which give rise to orbits with historic behavior has *positive Lebesgue measure*?

Theorem B (Answer to Takens' last problem)

Hénon family $f_{a,b}: \mathbb{R}^2 \to \mathbb{R}^2$

$$f_{a,b}(x,y) = (1 - ax^2 + y, bx)$$

where a, b: real parameters

Hénon family $f_{a,b}:\mathbb{R}^2 o \mathbb{R}^2$

$$f_{a,b}(x,y) = (1 - ax^2 + y, bx)$$

where a, b: real parameters

Hénon family $f_{a,b}:\mathbb{R}^2 \to \mathbb{R}^2$

$$f_{a,b}(x,y) = (1 - ax^2 + y, bx)$$

where a, b: real parameters

Open problem [van Strien '10], [Lyubich-Martens '11]

Does the Hénon family have a non-trivial wandering domain?

Corollary C

There is an open set \mathcal{O} of the parameter space of Hénon family with $\mathrm{Cl}(\mathcal{O}) \ni (2,0)$ such that for every $(a,b) \in \mathcal{O}$, $f_{a,b}$ is approximated by C^r diffeomorphisms, $2 \le r < \infty$, which have historic & non-trivial wandering domains.

Hénon family $f_{a,b}: \mathbb{R}^2 \to \mathbb{R}^2$

$$f_{a,b}(x,y) = (1 - ax^2 + y, bx)$$

where a, b: real parameters

Open problem [van Strien '10], [Lyubich-Martens '11]

Does the Hénon family have a non-trivial wandering domain?

Corollary C

There is an open set \mathcal{O} of the parameter space of Hénon family with $\mathrm{Cl}(\mathcal{O}) \ni (2,0)$ such that for every $(a,b) \in \mathcal{O}$, $f_{a,b}$ is approximated by C^T diffeomorphisms, $2 \le r < \infty$, which have historic & non-trivial wandering domains.

63

Hénon family $f_{a.b}: \mathbb{R}^2 \to \mathbb{R}^2$

$$f_{a,b}(x,y) = (1 - ax^2 + y, bx)$$

where a, b: real parameters

Open problem [van Strien '10], [Lyubich-Martens '11]

Does the Hénon family have a non-trivial wandering domain?

Corollary C

There is an open set \mathcal{O} of the parameter space of Hénon family with $\mathrm{Cl}(\mathcal{O}) \ni (2,0)$ such that for every $(a,b) \in \mathcal{O}$, $f_{a,b}$ is approximated by C^r diffeomorphisms, $2 \le r < \infty$, which have historic & non-trivial wandering domains.

Thank you for your kind attention!

The paper can be downloaded from:

arXiv:1503.06258

or

ResearchGate

