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In a nutshell

The setting
A wind-tree: a billiard on the plane with an infinity of square
scatterers.
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A generic wind-tree is ergodic and minimal.
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Tile the plane by square cells

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,



Put a tree (2r-side square) on each cell




You get a wind-tree table

o p0oEa08 80 500 808 npB ppob oBe 00
Opg omo0 pooC0 op ODoog opY Oooo 0 oo o
Do D0 i g0 (@ Oop g 08 gBg ol gl goo
0D Opgg OppdOg0 00 00 0RO oog o2 O 0o
gooo o0 O0opE gpo 00 8p B0g o gop o
0 0pp uPm opbp 000 omopEopd 0000
SgopgOpO Op D000 pmpp oo pd@ Oopg
OgH 0o OOpom pCppo 00 O
0 o0 obl g 08pofom Inbpg
Oppo0od o Ogpoo O0Og oo
oo Yo 0000 oo
oOgpfO8gopg
DDDDDDDDDD
=] O

of

poo0go o890 O
U0 ooogogo OO0

D0gopeld oo O
0 pYnp oo Bo Oy
Opf poo opfoo OOpp gl O @
o000 gpP 0 ooo UoP0 go gpoo gfog O
O o0 Ogopoood 00 0p opg Ogg UpfO00o@g
O000pn 0000 gpBpgnooo osBpo0o gBon
o 00 gopOf Bg00g gOngg opg B8 g O
DooOOUg U0 gpn O0gpn p0of0g g pO0O0 00
Op oo 0o oP 0 0gBffp ppoU0p Op oPP 0

DOgUgoo O

O
oD O0g0 o gooe @

[}
]
]
0
[m]

Opo g0 Ogo gf Opp 0@ oof opo
Og gpgobo go
0 gg

o go DD
0 og O0Op



Play billiard on it! You get the wind-tree flow
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This was a picture of the billiard flow. Let consider the first return
map to the border of the table: the billiard map.



Wind-tree map sends a point in the border and a direction to the
point and the direction corresponding to the next bouncing.
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ot everywhere defined.

Note that the map is n



, only four directions

Note that for any starting point and direction



Parameter space

The set of 2r by 2r squares, with vertical and horizontal sides,
centered at (a, b) contained in the unit cell [0, 1], is naturally
parametrized by

A={t=(a,b):r<a<l—r, r<b<1l-r}
Our parameter space is AZ* with the product topology.

Phase space

Once launched in the direction 6, the billiard direction can only
achieve four directions {£6,+(0 — )}; thus the phase space Qf of
the billiard map Teg is a subset of the cartesian product of the
boundary with these four directions. It contains precisely the pairs
(s, ®) such that at s the direction ¢ points to the interior of the
table.



Parameter space



Phase space

N ™
Figure: The phase space

decomposes into four oriented
“intervals”.

Figure: The contribution of one tree.



Theorem (Generic minimality)
There is a dense Gy set of parameters G such that for each g € G:

> for a dense-G; set of full measure of 0 the wind-tree map T§
is minimal and has forward and backward escape orbits,

» the map T& has a dense set of periodic points,
» if r is rational, then the map T& has a locally dense set of
periodic points,

> no two trees intersect.



Definition

» A dense Gg set is a countable intersection of open dense sets.
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Definition

» A map or a flow is minimal if and only if all its orbits are dense.
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Definition

» An orbit or half-orbit is an escape orbit if every compact set is
visited only finitely many times.

Theorem (Generic minimality)
There is a dense Gg set of parameters G such that for each g € G:

> for a dense-G; set of full measure of 0 the wind-tree map T§
is minimal and has forward and backward escape orbits,

» the map T# has a dense set of periodic points,
» if r is rational, then the map T8 has a locally dense set of
periodic points,

> no two trees intersect.



Definition
» The set of periodic points is called locally dense if there exists
a Gg-subset of the boundary which is of full measure, such

that for every s in this set, there is a dense set of
inner-pointing directions 6 € §1 for which (s, 8) is periodic.

Theorem (Generic minimality)
There is a dense Gs set of parameters G such that for each g € G:

> for a dense-G; set of full measure of 0 the wind-tree map T§
is minimal and has forward and backward escape orbits,

» the map T& has a dense set of periodic points,
» if r is rational, then the map T& has a locally dense set of
periodic points,

> no two trees intersect.



Theorem (Generic ergodicity)

There is a dense Gs subset G of parameters AZ* such that for each
g € G there is a dense Gs subset of directions H C §1 of full
measure such that the billiard flow on T in the direction 6 is
ergodic for every 6 € H.



Definition

» A dense Gg set is a countable intersection of open dense sets.

Theorem (Generic ergodicity)

There is a dense Gg subset G of parameters AZ* such that for each
g € G there is a dense Gs subset of directions H C §1 of full
measure such that the billiard flow on T in the direction 6 is
ergodic for every 0 € H.



Definition

» A map or a flow is ergodic if and only if every measurable
invariant set is of zero measure or has a complementary of
zero measure.

Theorem (Generic ergodicity)

There is a dense G subset G of parameters AZ* such that for each
g € G there is a dense Gs subset of directions H C §1 of full
measure such that the billiard flow on T in the direction 6 is
ergodic for every 6 € H.



The key idea

N Inm
i R + Mg
EJ SDLJ [D DD ED
1 U0 DDD[D
il -
] ]

Figure: A 2-ringed configuration. Figure: A small perturbation.



The key idea: use known results on compact invariant subsets
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Figure: A 2-ringed configuration. Figure: A small perturbation.

For minimality:

In a polygonal billiard, any direction without saddle connections
gives rise to a minimal billiard map. (Keane)



The key idea: use known results on compact invariant subsets
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Figure: A 2-ringed configuration. Figure: A small perturbation.

(A saddle connection is loosely speaking a Tj-orbit going from a
corner of a tree to some corner (maybe the same one).)



The key idea: use known results on compact invariant subsets
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Figure: A 2-ringed configuration. Figure: A small perturbation.

For ergodicity:

KMS: In every rational polygonal billiard, almost every direction
gives rise to ergodic billiard map/flow.
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5. Ableitungsversuche der Huufigkeitsansitzo 2. Art sus denen 1. Arh. 79

Zwischenstick: Mit Ritcksicht auf cinigo spitere Erorierungen emplieblt os
sersto versinfachten Modell 7 erliutern, welche Stellung.
nsats in den suletst erwihnten Mazwell- Boltzmannschen Unter-

.

In der unbegronsten Zeichensbeno bowege sich cino sehr grosse, aber end-
liche Zahl (N) von materiellen Punkten: die ,P-Molekille", Sie seien fiir ein-
ander vollstindi durchdringlich.  Sio bowegon sich krifefre, vusser dass sio
alastische Zuswmmenstasse it den nun einzufibrenden @-Moleklen erfabren,
— Die Q- Molokile® sind Quadrate von der Seitenlings a, in wnendiicher Zabl
el e dio menliche Zichenebas e, i s el G
befostigt), auf jeden grissero Gebict sollen nahe giichviel entfallen, d
Distan 1 s michemachbarin -0 gom senen i, wnd s Diogosion
Jodes Q- Molekies sion exakt. puralll der - resy.

e Zei 1, migon allo - Molakile diseivs bsluigoschwindighei ¢ nd
nu die folgenden vier Bewegungarichtungen beritzen:

= @t ®e Wl

Wegen der Unbereglickeit dex Q-oltkilo und dr craben Orontorun hrex
Dingonalen wird dieso Verfigung sich duuernd anfrecht erhalten. — Hingegen
indern sich durch dic Stisse, welohe die P-Molrkile an den @-Molekilen er-
fabren, dio Zahlen

For b s fos

dio_angoben, wie viele Molekile in cinem bestimmten Zcitpunkt dic ango-
fihrten vier Bewegungerichtungen s tindert sich die , Geschwindigkeits-
verteilung®.

Das Analogon zur Maguellschen-Verteilang bildet hier die Verteilung:

®) A =1

Bs handelt sich olso um den Nachwois, duss unter der Wirkung der Zu-
cammenstisse ein sukzessiver Ausgleich dor Zablen /i staitindet, und dass die
Vertoilung (5) sich aufrecht erbilt, sohald sie cinmal cingetreten ist.

N,y At bezsichno dio Zahl dor P-Molekile, dic im Zeitelemont At durch

nen Ensmmensons s Qo Bewegungerichtang (1) indin ikt ) gevoren

Es sind das offenbar alle und nur dicjenigen Molokile, welche zu
B.gm de Zeielemente At sugleich flgende bden Bodingungen exlen:

besitzen die Bowegungerichtung

B S iegon i ingondeinen dor Sidfen 5 (Fig 1) [An jodes dox ua-

endlich vielen @-Molekille it ein solcher Strcifen angelegt za denken.]

Die Angabe der Zahlen f,, f,, fur for geniigh offenbar woch nicht, wm su

bestimmen, wic vicle - Molekile ausser der Bedingung A) awch noch die Be-

48) Der hypotbetische Charekter dos Stossrablansaties wurde lange Zeit
durchens nicht empfunden. Zum Belog vgl. in Boltzmann [4] (1871) dio Schluss-
abo ich in jener Abhandlung* — gemeint ist die suf dem
ferte Abhandlung (3] — ,den weitliufigeren, aber von jeder
Hypothese freien Weg eingeschlagen

2

1912, Paul & Tatiana Ehrenfest, Begriffliche Grundlagen der
Statistischen Auffassung in der Mechanik

20 V82 P.u.T. Ehrenfest. Begrifflcho Grundlagen . statistischen Auffassung.

dingung B) erfillen. — Das Analogon m dem mebrfach genannten Stosseahl-
ansats bestoht nun in folgender Behauptung:

Von den P-Molekilen jeder einzeluon
Bowegungarichtung entfillt auf dio Streifen
5 ein soleer Bruchtel al dos Verhltia
dor Gosamtfiicho allor  zur totalen freien
Fiiche sntspricht. Dies Veshilins st bo:
aeichnet mit
®

) kot

Danach witrden im Zeitelement At

® N Bt 7, - kAL

Molekllo von (1) nach (2) geworfen; analog

@ Nyt kAL

im selben Zeitelement, At umgekebrt von

(2) nach (1). (Hier sind die Streifen § durch

§ die flichengleichen Streifen § — Fig. 1 —

Fig. 1. . erseteen.)

Dio Gaguuthuntallng dsc Glsinsg

(@) und (8) zeigt unmittelbar, dase bei den Stissen vom obigen Typ:

grossere £ an das kleinere / wihrend Af in Summo

® Mh—h1- kot

Molekle st — Auslog i jelos andore P som Soster.

n bei der Berechnung der Zahen Nys, oy, Ny, Nog

Zeomen s i 4 Sosealonats (—) sgrande gelgt wird, so er-
ine monotone Abnahme fiir dic Unterschicde. der Zahlen f,, f,, fy [

(Binscitige Anmiilerung an Verteilung 5.)
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investigations.

Let us consider a large but finite number (N) of ma-
terial points moving in the infinite plane. We will call
these points the “P-molecules.” We will assume that
they can completely penetrate each other. They move in
the absence of forces, except for elastic collisions that
they undergo with the ““Q-molecules.” The “Q-molecules”
are defined as squares with sides of length a; there are an
infinite number of them, distributed irregularly over the
infinite plane, and they are fixed. Every portion of the
plane contains about the same number of them (i..,
the distribution is uniform over the plane), and the
average distance A of the neighboring squares is large
compared to a. The diagonal of each Q-molecule is exactly
parallel to the z and y axes respectively.

‘We assume that at time ¢, all P-molecules have the
same speed ¢ and that they can move in the following
four directions:

- @1 @< @l

Because the Q-molecules are fixed and because their
diagonals are oriented exactly, this assumption will hold
true at any time. On the other hand, however, the num-
bers

@ Iy Ju du fo

which are the numbers of molecules moving in the four
directions at any given time, will be changed by the col-
lisions of the P-molecules with the Q-molecules. In other
words, the “velocity distribution” will change.

The distribution analogous in this example to the
Maxwell distribution is

Appendiz to Section & ® f=fi=fi=f
Because of certain later discussions it seems advisable
to explain on a much-simplified model what the position Therefore in our case we have to show that & gradual
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equalization of the four f/s takes place under the influ-
ence of the collisions and that the distribution (Eq. 5)
maintains itself once it has been achieved.

Let us denote by NuAt the number of P-molecules
whose motion is changed by the collision from direction
(1) to direction (2). These are all those and only those
molecules which at the beginning of time interval At
satisfy simultaneously the following two requirements:

A. They move in direction (1).

Figure 1

B. They lie in one of the strips 8. (See Figure 1; one
should imagine that each of the infinitely many @-mole-
cules has such a strip attached to it.)

It is clear that knowledge of the numbers fi, fi, fs, fu
is not enough to determine how many P-molecules satis-
fying condition A will also satisfy condition B.

The analogy to the Stosszahlansatz can now be ex-
pressed by the following statement:

The fraction of P-molecules of each single direction of
motion which lie in the strips S is the same as the ratio
of the total area of the strips to the total free area in the
plane. Let us denote this ratio by

1912, Paul & Tatiana Ehrenfest, The Conceptual Foundations
of the Statistical Approach in Mechanics
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(6) k-At.

Then in time interval A

@ Nudt = fy-kat

molecules are thrown from (1) to (2); similarly

@® Nubt = f- kAt

molecules are thrown in the same time interval from
(2) to (1). (Here the strips S are to be replaced by the
strips 8’ which have the same area; see Figure 1.)

A comparison of Eqgs. (7) and (8) shows immediately
that, because of collisions of the type discussed above,
in time interval At the larger f loses
(0] IRFARY
molecules to the smaller f. An analogous statement can
be made about every other pair of collision types.

If we use the Stosszahlansatz given in Eq. (7) for the
calculation of the numbers Ny, Nu, Nu, Nu, etc, in
each time interval At, we get a monotonic decrease in the
differences between the numbers fi, f3, fs, fu. Distribution
(Eq. 5) is therefore reached monotonically in time.




The Ehrenfest placed their obstacles "irregularly"

D1e ,,Q) Molekule“ sind Quadrate von der heltenl.mge a, in uncndlzcher l&hl
regellos iber die unendliche Zeichencbene verteilt, und zwar wnbeweglich (starr
befestigt), auf jedes griossere Gebiet sollen nahe gleichviel entfallen, die mittlere
Distanz A der niichstbenachbarten soll gross gegen a sein, und die Diagonalen
Jedes Q- Moleliiles seien exakt parallel der x- resp. y-Axe.

cemolecuios The “Q-molecules”
are deﬁned asw1th sides of length a; there are an
infinite number of them, dlstnbutedover the
mﬁmte plane, and they are ﬁxed. Fvery portion




The Ehrenfest placed their obstacles "irregularly" , but...

D1e ,,Q Molekule“ sind Quadrate von der beltenl.mge a, in uncndluher Aahl
regellos iber die unendliche Zeichencbene verteilt, und zwar wnbeweglich (starr
befestigt), auf jedes grossere Gebiet sollen nahe gleichviel entfallen, die mittlere
Distanz A der niichstbenachbarten soll gross gegen a sein, und die Diagonalen
Jedes Q- Moleliiles seien exakt parallel der z- resp. y-Axe.

they unde h 4l remaoiecuics.”” The “@-molecules”
are deﬁned as squares WIth sides of length a; there are an
infinite number of them, distributed 1rregu1arly over the
infinite plane, and they are fixed. Every portion of the
plane contains about the same number of them (i.e.,
the distribution is uniform over the plane), and [the]
|average distance A of the neighboring squares is large
compared to al The diagonal of each @-molecule is exactly

parallel to the z and y axes respectively.




Their used a kind of mixing

true at any time. On the other hand, however, the num-
bers
(4) flt f% j’v f‘s
v i are the numbers of molecules movmg in the four
dlrectlons at any ngen time, il he : .

The distribution ~noio: oo in this cxarnoie £ ‘i
Meaxwell distribution is

N

®) R=fi=fi=fi=

Therefore in our case we have to show that a gradual
equalization of the four f/'s takes place under the influ-
ence of the collisions and that the distribution (Eq. 5)
maintains iteelf once it has been achieved.

in order to show that directions become “decorrelated”.



Their used a kind Qfﬁﬂfi*%ﬁg

ULLSSS X . the num-
bers
(4) flt f% j’v f‘s
v i are the numbers of molecules movmg in the four
dlrectlons at any ngen time, il he : .

The distribution ~noic. w0 in this exanole £ 4
Meaxwell distribution is

N

®) R=fi=fi=fi=

Therefore in our case we have to show that a gradual
equalization of the four f/'s takes place under the influ-
ence of the collisions and that the distribution (Eq. 5)
maintains iteelf once it has been achieved.

in order to show that directions become “decorrelated”.



Their used k-fold ergodicity

kel ) Un the other hand, however, the num-
bers
(4) flt f% j’v f‘s
v i are the numbers of molecules movmg in the four
dlrectlons at any ngen time, il he : .

The distribution ~noio: oo in this cxarnoie £ ‘i
Meaxwell distribution is

N

®) R=fi=fi=fi=

Therefore in our case we have to show that a gradual
equalization of the four f/'s takes place under the influ-
ence of the collisions and that the distribution (Eq. 5)
maintains iteelf once it has been achieved.

in order to show that directions become “decorrelated”.



Work in Progress

Ergodicity of any positive integer power of the wind-tree flow is
generic.
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