Complexity and Sturmian colorings of regular trees

(joint work w/ Seonhee Lim)

Dong Han Kim

Dongguk University - Seoul, Korea

School and Conference on Dynamical Systems ICTP, 7 Agust 2015

Complexity of infinite words

Consider sequences in $\mathcal{A}^{\mathbb{N}} = \{a, b\}^{\mathbb{N}}$.

Subword complexity (Factor complexity)

The subword complexity for an infinite word $\mathbf{u} \in \mathcal{A}^{\mathbb{N}} = \{\mathbf{a}, \mathbf{b}\}^{\mathbb{N}}$ $p_{\mathbf{u}}(n) = \text{the number of different subwords of length } n \text{ in } \mathbf{u}.$

 $p_{\mathbf{u}}(n)$ = the number of different subwords of length n in \mathbf{u} .

$$p(1) = 2$$
 a, b

$$p(1) = 2$$
 a, b

$$p(1) = 2$$
 a, b

 $p_{\mathbf{u}}(n) = \text{the number of different subwords of length } n \text{ in } \mathbf{u}.$

$$p(1)=2,\quad p(2)=3\qquad \text{ab},\text{ba},\text{aa}$$

$$p(1)=2, \quad p(2)=3$$
 ab, ba, aa

$$p(1) = 2$$
, $p(2) = 4$ ab, ba, aa, bb

 $p_{\mathbf{u}}(n)$ = the number of different subwords of length n in \mathbf{u} .

$$p(1)=2, \quad p(2)=3, \quad p(3)=3 \qquad \text{aba}, \text{baa}, \text{aab}$$

$$p(1)=2, \quad p(2)=3, \quad p(3)=4 \qquad \text{aba}, \text{baa}, \text{aab}, \text{bab}$$

$$p(1)=2, p(2)=4, p(3)=8 \; \texttt{aba}, \texttt{bab}, \texttt{aaa}, \texttt{bba}, \texttt{aab}, \texttt{bbb}, \texttt{abb}, \texttt{baa}$$

 $p_{\mathbf{u}}(n) = \text{the number of different subwords of length } n \text{ in } \mathbf{u}.$

$$p(1) = 2$$
, $p(2) = 3$, $p(3) = 3$, $p(4) = 3$

$$p(1) = 2$$
, $p(2) = 3$, $p(3) = 4$, $p(4) = 5$

$$p(1) = 2$$
, $p(2) = 4$, $p(3) = 8$, $p(4) = 16$

 $p_{\mathbf{u}}(n)$ = the number of different subwords of length n in \mathbf{u} .

$$p(1) = 2$$
, $p(2) = 3$, $p(3) = 3$, $p(4) = 3$, $p(n) = 3$

$$p(1) = 2$$
, $p(2) = 3$, $p(3) = 4$, $p(4) = 5$, $p(n) = n + 1$

$$p(1) = 2$$
, $p(2) = 4$, $p(3) = 8$, $p(4) = 16$, $p(n) = 2^n$

Subword complexity and Sturmian word

Theorem (Hedlund-Morse (1940))

The followings are equivalent:

- 1. The infinite word **u** is eventually periodic.
- 2. The subword complexity $p_{\mathbf{u}}$ satisfies $p_{\mathbf{u}}(n+1) = p_{\mathbf{u}}(n)$ for some n > 0.
- 3. The subword complexity $p_{\mathbf{u}}$ is bounded.

Subword complexity and Sturmian word

Theorem (Hedlund-Morse (1940))

The followings are equivalent:

- 1. The infinite word **u** is eventually periodic.
- 2. The subword complexity $p_{\mathbf{u}}$ satisfies $p_{\mathbf{u}}(n+1) = p_{\mathbf{u}}(n)$ for some n > 0.
- 3. The subword complexity $p_{\mathbf{u}}$ is bounded.

Definition

An infinite word **u** is called Sturmian if $P_{\mathbf{u}}(n) = n + 1$.

Sturmian words have the lowest complexity among non-eventually periodic words.

A regular tree

T is k-regular tree, i.e., each vertex has k edges.

All edge lengths = 1.

A vertex coloring of 3-regular tree

A coloring of T is a map $\phi: VT \to \mathcal{A}$.

VT: vertex set of T.

 $\mathcal{A}:$ alphabet.

A periodic coloring of 3-regular tree

Another periodic coloring of 3-regular tree

 $B_n(x) = \{y \in VT \cup ET : d(x,y) \le n\}.$ (ET : edge set of T) $[B_n(x)]$: equivalent class by color-preserving isomorphisms.

 $B_n(x) = \{y \in VT \cup ET : d(x,y) \leq n\}.$ (ET: edge set of T) $[B_n(x)]$: equivalent class by color-preserving isomorphisms.

Finite quotient graph

Periodic coloring on the regular tree

G = Aut(T): the group of automorphisms of T, a locally compact topological group with compact-open topology.

Definition

A coloring $\phi: VT \to \mathcal{A}$ is periodic if there exists a subgroup $\Gamma \subset G$ such that $\Gamma \backslash T$ is a finite graph and ϕ is Γ -invariant, i.e.

$$\phi(\gamma x) = \phi(x)$$
, for all $x \in VT$ and $\gamma \in \Gamma$.

Note that we do not require Γ to be a discrete subgroup of G.

Subball complexity of periodic colorings

The subball complexity $b_{\phi}(n)$ of ϕ is the number of colored n-balls by ϕ .

Subball complexity of periodic colorings

The subball complexity $b_{\phi}(n)$ of ϕ is the number of colored n-balls by ϕ .

Subball complexity of periodic colorings

The subball complexity $b_{\phi}(n)$ of ϕ is the number of colored n-balls by ϕ .

Theorem (K-Lim)

Let $\phi: VT \to \mathcal{A}$ be a coloring. The followings are equivalent.

- 1. The coloring ϕ is periodic.
- 2. The subball complexity of ϕ satisfies $b_{\phi}(n+1) = b_{\phi}(n)$ for some n > 0.
- 3. The subball complexity $b_{\phi}(n)$ is bounded.

Note that $\Gamma \backslash T$ has a structure of a graph of groups, i.e., the quotient graph $X = \Gamma \backslash T$ with stabilizers $\Gamma_x = \operatorname{Stab}_{\Gamma}(x)$ attached to each class $x \in VX \cup EX$.

From $\Gamma \setminus T$ to (T, ϕ) we only need $[\Gamma_x : \Gamma_{\partial(x)}]$.

Motivation

- ▶ Discrete subgroup of Lie groups are important in studying Riemannian manifolds of negative curvature.
- ightharpoonup M locally symmetric :

$$M \cong \pi_1(M) \backslash \widetilde{M},$$

where $\Gamma = \pi_1(M) \subset G = \mathrm{Isom}^+(\widetilde{M})$ discrete

$$M \cong \Gamma \backslash G/K$$

▶ Margulis arithmeticity used dichotomy of commensurator group of a discrete subgroup Γ of G:

$$Comm(\Gamma) = \{ g \in G : g\Gamma g^{-1} \cap \Gamma \subset_{\text{f.i.}} \Gamma \}$$

Motivation

- ▶ Comparison of Lie groups with automorphism group Aut(T) of a tree T: study of discrete subgroup of Aut(T).
- ▶ A subgroup Γ is discrete if $\operatorname{Stab}_{\Gamma}(t)$ are all finite for all $t \in VT, ET$.
- \triangleright A discrete subgroup Γ is of finite covolume if

$$\operatorname{Vol}(\Gamma \backslash \backslash T) = \sum_{g \in V(\Gamma \backslash T)} \frac{1}{|\operatorname{Stab}_{\Gamma}(t)|} < \infty.$$

Motivation

- ▶ Comparison of Lie groups with automorphism group $\operatorname{Aut}(T)$ of a tree T: study of discrete subgroup of $\operatorname{Aut}(T)$.
- ▶ A subgroup Γ is discrete if $\operatorname{Stab}_{\Gamma}(t)$ are all finite for all $t \in VT, ET$.
- \triangleright A discrete subgroup Γ is of finite covolume if

$$\operatorname{Vol}(\Gamma \backslash T) = \sum_{g \in V(\Gamma \backslash T)} \frac{1}{|\operatorname{Stab}_{\Gamma}(t)|} < \infty.$$

- Q1 Given Γ , is there an invariant of $g \in \operatorname{Aut}(T)$ which distinguishes commensurator elements?
- Q2 It there any hierarchy for $g \in G$ with respect to Γ ?

Example : Commensurator elements

Let $\Gamma = \langle a_1, \dots, a_k : a_i^2 = 1 \rangle$, T Cayley graph of Γ , $g \in \operatorname{Aut}(T)$

Example: Commensurator elements

Let $\Gamma = \langle a_1, \dots, a_k : a_i^2 = 1 \rangle$, T Cayley graph of Γ , $g \in \operatorname{Aut}(T)$

For $t \in VT$, a unique $\gamma_t \in \Gamma$ sending the identity to t. Then

$$\gamma_{g(t)}^{-1} \circ g \circ \gamma_t(\mathrm{id}) = \mathrm{id}.$$

Example : Commensurator elements

Let $\Gamma = \langle a_1, \dots, a_k : a_i^2 = 1 \rangle$, T Cayley graph of Γ , $g \in \operatorname{Aut}(T)$

For $t \in VT$, a unique $\gamma_t \in \Gamma$ sending the identity to t. Then

$$\gamma_{g(t)}^{-1} \circ g \circ \gamma_t(\mathrm{id}) = \mathrm{id}.$$

Let $\phi_g(t)$ be the map $\gamma_{g(t)}^{-1} \circ g \circ \gamma_t$ restricted to the 1-sphere of the identity. Then

$$\phi_g: VT \to S_k$$
 is a coloring,

where S_k is the symmetric group.

Example : Commensurator elements

Let
$$\Gamma = \langle a_1, \dots, a_k : a_i^2 = 1 \rangle$$
, T Cayley graph of Γ , $g \in \operatorname{Aut}(T)$

For $t \in VT$, a unique $\gamma_t \in \Gamma$ sending the identity to t. Then

$$\gamma_{g(t)}^{-1} \circ g \circ \gamma_t(\mathrm{id}) = \mathrm{id}.$$

Let $\phi_g(t)$ be the map $\gamma_{g(t)}^{-1} \circ g \circ \gamma_t$ restricted to the 1-sphere of the identity. Then

$$\phi_g: VT \to S_k$$
 is a coloring,

where S_k is the symmetric group.

Theorem (Lubotzky-Mozes-Zimmer, Avni-Lim-Nevo)

 $g \in Comm(\Gamma) \Leftrightarrow \phi_g \text{ is periodic } \Leftrightarrow b_{\phi_g} \text{ is bounded.}$

Sturmian colorings

Definition

A coloring ϕ of a k-regular tree T is called Sturmian if

$$b_{\phi}(n) = n + 2.$$

Note that $b_{\phi}(n) = n + 2$ is the minimal unbounded subball complexity for non periodic coloring ϕ .

For any coloring ϕ consider the coloring preserving subgroup

$$\Gamma_{\phi} = \{ g \in \operatorname{Aut}(T) : \phi(gt) = \phi(t) \}.$$

Not if ϕ is not periodic, then the quotient graph $X_{\phi} = \Gamma_{\phi} \backslash T$ is an infinite graph.

Question: How does X_{ϕ} look if ϕ is Sturmian?

A sturmian coloring of 3-regular tree

Quotient graph X:

A sturmian coloring of 3-regular tree (bounded type)

Quotient graph X:

A sturmian coloring of 3-regular tree (unbounded type)

Quotient graph X:

Main Theorem

Let ϕ be a Sturmian coloring of a regular tree T.

Theorem (K-Lim)

There exists a group Γ acting on T such that ϕ is Γ -invariant, so that ϕ is a lifting of a coloring ϕ_X on the quotient graph $X = \Gamma \backslash T$. The quotient graph $X = G \backslash T$ is one of the following two types of graphs.

Colorings on the 2-regular tree and bi-infinite words

In the 2-regular tree, colored n-balls are 2n + 1-words indentified with revered words.

Colorings on the 2-regular tree and bi-infinite words

In the 2-regular tree, colored n-balls are 2n + 1-words indentified with revered words.

A bi-infinite Sturmian word:

 $\cdots a b \underline{a} \underline{a} \underline{b} \underline{a} \underline{b} \underline{a} \underline{b} \underline{a} \underline{b} \underline{a} \underline{b} \underline{a} \cdots$

Colorings on the 2-regular tree and bi-infinite words

In the 2-regular tree, colored n-balls are 2n + 1-words indentified with revered words.

A bi-infinite Sturmian word:

$$\cdots$$
 a b a a b a b a a b a a b \cdots

$$b(n) = \frac{1}{2} \cdot \left(p(2n+1) + \text{ # of palindromic } (2n+1)\text{-word} \right)$$

= $\frac{1}{2} \cdot \left((2n+2) + 2 \right) = n+2.$

Other Sturmian colorings on the 2-regular tree

Also "non-irrational" colorings:

Sturmian coloring of bounded type

A colored *n*-ball [B] is special if there exist $x, y \in VT$ such that $[B_n(x)] = [B_n(y)] = [B]$ but $[B_{n+1}(x)] \neq [B_{n+1}(y)]$.

$$\Lambda(x) = \{ n \ge 0 : [B_n(x)] \text{ is special} \}.$$

Sturmian coloring of bounded type

A colored *n*-ball [B] is special if there exist $x, y \in VT$ such that $[B_n(x)] = [B_n(y)] = [B]$ but $[B_{n+1}(x)] \neq [B_{n+1}(y)]$.

$$\Lambda(x) = \{n \ge 0 : [B_n(x)] \text{ is special}\}.$$

A coloring ϕ is of bounded type if $|\Lambda(x)| < \infty$, $\forall x \in VT$. Denote $\tau(x) = \max \Lambda(x)$.

Sturmian coloring of bounded type

A colored *n*-ball [B] is special if there exist $x, y \in VT$ such that $[B_n(x)] = [B_n(y)] = [B]$ but $[B_{n+1}(x)] \neq [B_{n+1}(y)]$.

$$\Lambda(x) = \{ n \ge 0 : [B_n(x)] \text{ is special} \}.$$

A coloring ϕ is of bounded type if $|\Lambda(x)| < \infty$, $\forall x \in VT$. Denote $\tau(x) = \max \Lambda(x)$.

Theorem (K-Lim)

If ϕ is a Sturmian coloring, then there exists a proper infinite quotient graph X of T with

$$VX = \{m, m+1, m+2, \dots, \},$$

$$EX \subset \{[i, i+1], [i+1, i] \mid i \ge m\} \cup \{[i, i] \mid i \ge m\}$$

and a coloring ϕ_X on X such that $\phi = \phi_X \circ \pi$, where $\pi : T \to X$ is the canonical quotient map and $m = \min\{\tau(x) : x \in VT\}$.

More examples of bounded type Sturmian coloring

Example (Periodic configurations)

Example (Non-periodic edge configuration)

Bounded type Sturmian coloring

Theorem (K-Lim, in preparateion)

Let ϕ be a Sturmian coloring of bounded type on T. Then there exist a periodic coloring $\tilde{\phi}$ on T and an infinite subtree T_0 such that

- 1. $\tilde{\phi}|_{T_0} = \phi|_{T_0}$.
- 2. $T = \bigcup_{i=0}^{\infty} f_i(T_0)$ and $f_i(T_0) \cap f_j(T_0)$ contains at most one vertex for $i \neq j$.
- 3. $f_j \circ f_i^{-1}$ is a ϕ -preserving automorphism from $f_i(T_0)$ to $f_j(T_0)$ for all i, j.

The converse of the theorem does not hold in general. Such a coloring should be a quasi-Sturmian coloring.

Sturmian coloring of unbounded type

Theorem (K-Lim)

If ϕ is a Sturmian coloring of unbounded type, then there exists a proper quotient infinite graph X and a coloring ϕ_X on X such that $\phi = \phi_X \circ \pi$, where π is the projection from the regular tree T to X. Moreover, we have

$$VX = \{0, 1, 2, \dots, \}, \quad EX \subset \{[i, i+1] \, | \, i \geq 0\} \cup \{[i, i] \, | \, i \geq 0\}$$

or

$$\begin{split} VX &= \{\dots, -2, -1, 0, 1, 2, \dots, \}, \\ EX &\subset \{[i, i+1] \,|\, i \in \mathbb{Z}\} \cup \{[i, i] \,|\, i \in \mathbb{Z}\}. \end{split}$$

Examples of unbounded Sturmian colorings

Example (with a periodic edge configuration)

Example (with a periodic vertex configuration)

Example