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Complexity of infinite words

Consider sequences in AN = {a, b}

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab...

abaababaabaababaababaabaababaababaabaababaabaab...

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb...



Subword complexity (Factor complexity)

The subword complexity for an infinite word u € AN = {a, b}

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab...

abaababaabaababaababaabaababaababaabaababaabaab...

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb...



Subword complexity

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab...

p(1)=2  ab

abaababaabaababaababaabaababaababaabaababaabaab...

p(1)=2  ab

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb...

p(1)=2  ab



Subword complexity

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab...

p(l)=2, p(2)=3 ab, ba, aa

abaababaabaababaababaabaababaababaabaababaabaab...

p(1)=2, p(2)=3 ab, ba, aa

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb...

p(1)=2, p2)=4 ab, ba, aa, bb



Subword complexity

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab...

p(1)=2, p(2)=3, p3)=3 aba, baa, aab



Subword complexity

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab...



Subword complexity

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab...



Subword complexity and Sturmian word

Theorem (Hedlund-Morse (1940))
The followings are equivalent:
1. The infinite word u is eventually periodic.

2. The subword complexity py satisfies pu(n + 1) = pu(n) for
some n > 0.

3. The subword complexity py is bounded.



Subword complexity and Sturmian word

Theorem (Hedlund-Morse (1940))
The followings are equivalent:
1. The infinite word u is eventually periodic.

2. The subword complexity py satisfies pu(n + 1) = pu(n) for
some n > 0.

3. The subword complexity py is bounded.

Definition
An infinite word u is called Sturmian if Py(n) =n + 1.

Sturmian words have the lowest complexity among
non-eventually periodic words.



A regular tree

T is k-regular tree,
i.e., each vertex
has k edges.

All edge lengths = 1.



A vertex coloring of 3-regular tree

A coloring of T is a
map ¢ : VT — A.

VT : vertex set of T.
A : alphabet.



A periodic coloring of 3-regular tree



Another periodic coloring of 3-regular tree



B,(z)={y € VT UET :d(z,y) <n}. (ET : edge set of T)

[By(x)] : equivalent class by color-preserving isomorphisms.



B,(z)={y € VT UET :d(z,y) <n}. (ET : edge set of T)

[By(x)] : equivalent class by color-preserving isomorphisms.
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Periodic coloring on the regular tree

G = Aut(T') : the group of automorphisms of 7', a locally
compact topological group with compact-open topology.

Definition

A coloring ¢ : VT — A is periodic if there exists a subgroup

I’ C G such that I'\T is a finite graph and ¢ is I'-invariant, i.e.
¢(yx) = ¢(z), for all z € VT and v € T

Note that we do not require I' to be a discrete subgroup of G.



Subball complexity of periodic colorings

The subball complexity by(n) of ¢ is the number of colored
n-balls by ¢.



Subball complexity of periodic colorings

The subball complexity by(n) of ¢ is the number of colored
n-balls by ¢.

TTT
PP

bo(1) =3, by(2)=3



Subball complexity of periodic colorings

The subball complexity by(n) of ¢ is the number of colored
n-balls by ¢.

Theorem (K-Lim)
Let ¢ : VT — A be a coloring. The followings are equivalent.
1. The coloring ¢ is periodic.

2. The subball complexity of ¢ satisfies by(n + 1) = bg(n) for
some n > 0.

3. The subball complexity by(n) is bounded.



Note that I'\T has a structure of a graph of groups, i.e.,

the quotient graph X = I'\T with stabilizers I';, = Stabr(x)
attached to each class x € VX U EX.

From I'\T to (T, ¢) we only need [y : T'y(y)]-

3 1 2 3

* 0 ——— 0@
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Motivation

» Discrete subgroup of Lie groups are important in studying
Riemannian manifolds of negative curvature.

> M locally symmetric :
M = 1 (M)\M,
where T' = 7, (M) C G = Isom™ (M) discrete
M =T\G/K

» Margulis arithmeticity used dichotomy of commensurator
group of a discrete subgroup I' of G :

Comm(I') ={g € G:glg~' NI ;. I'}



Motivation

» Comparison of Lie groups with automorphism group
Aut(T) of a tree T : study of discrete subgroup of Aut(7T).

» A subgroup T is discrete if Stabr(t) are all finite for all
te VI,ET.

» A discrete subgroup I is of finite covolume if

1

Vol(T\\T') = EVEF:\T Stabr @] < 0.



Motivation

» Comparison of Lie groups with automorphism group
Aut(T) of a tree T : study of discrete subgroup of Aut(7T).

» A subgroup T is discrete if Stabr(t) are all finite for all
teVI,ET.

» A discrete subgroup I is of finite covolume if

Volt\7) = 3 ]Stablp()\ < 0.
geV(T\T)

Q1 Given I, is there an invariant of g € Aut(7") which
distinguishes commensurator elements?

Q2 It there any hierarchy for g € G with respect to I'?



Example : Commensurator elements

Let I'= (a1, -+ ,ay : a? = 1), T Cayley graph of I', g € Aut(T)



Example : Commensurator elements

Let I' = (a1, -+ ,ax : a? = 1), T Cayley graph of I, g € Aut(T)
For t € VT, a unique 7, € I" sending the identity to ¢. Then

'y;é) ogovy(id) =id.



Example : Commensurator elements

Let T'= {(ay,--- ,a : a? = 1), T Cayley graph of ', g € Aut(T)
For t € VT, a unique 7, € I" sending the identity to ¢. Then

'y;é) ogovy(id) =id.

Let ¢4(t) be the map 79(1) o g o ~y; restricted to the 1-sphere of
the identity. Then

¢g : VI — S, is a coloring,

where Sy is the symmetric group.



Example : Commensurator elements
Let I' = (a1, -+ ,ax : a? = 1), T Cayley graph of I, g € Aut(T)
For t € VT, a unique 7, € I" sending the identity to ¢. Then
'y;é) ogoy(id) =id.

Let ¢4(t) be the map ’79(1) o g o ~y; restricted to the 1-sphere of
the identity. Then

¢g : VI — S, is a coloring,

where Sy is the symmetric group.

Theorem (Lubotzky-Mozes-Zimmer, Avni-Lim-Nevo)

g € Comm(I") & ¢4 is periodic < by, is bounded.



Sturmian colorings

Definition
A coloring ¢ of a k-regular tree T is called Sturmian if

b¢(n) =n+4+2.

Note that bg(n) = n + 2 is the minimal unbounded subball
complexity for non periodic coloring ¢.

For any coloring ¢ consider the coloring preserving subgroup
Ty ={g € Aut(T) : ¢(gt) = o(1)}-

Not if ¢ is not periodic, then the quotient graph Xy = I'y\T is
an infinite graph.

Question: How does Xy look if ¢ is Sturmian?



A sturmian coloring of 3-regular tree



ababak



Basgugucs



Quotient graph X:

21 12 12 12 12 12 12 12 12



A sturmian coloring of 3-regular tree (bounded type)



R
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Quotient graph X:

3 21 21 21 21 21 21 21 21



A sturmian coloring of 3-regular tree (unbounded type)



b(1) =3



Basgugucs



Quotient graph X:

S ¢ D VD ¢ ¢ S ¢ S D ¢ ¢ S
I"T1 11 11 11 1T1 1111 11°1



Main Theorem

Let ¢ be a Sturmian coloring of a regular tree T'.
Theorem (K-Lim)

There exists a group I' acting on T such that ¢ is I'-invariant,
so that ¢ is a lifting of a coloring ¢x on the quotient graph

X =T\T. The quotient graph X = G\T is one of the following
two types of graphs.



Colorings on the 2-regular tree and bi-infinite words

In the 2-regular tree, colored n-balls are 2n + 1-words
indentified with revered words.



Colorings on the 2-regular tree and bi-infinite words

In the 2-regular tree, colored n-balls are 2n + 1-words
indentified with revered words.

A bi-infinite Sturmian word:

-abaababaabaab ---




Colorings on the 2-regular tree and bi-infinite words

In the 2-regular tree, colored n-balls are 2n + 1-words
indentified with revered words.

A bi-infinite Sturmian word:

-abaababaabaab ---

. (p(2n + 1) + # of palindromic (2n + l)—word)

-((2n+2)+2>:n+2.



Other Sturmian colorings on the 2-regular tree

Also “non-irrational 7 colorings:



Sturmian coloring of bounded type

A colored n-ball [B] is special if there exist z,y € VT such that
[Bn(2)] = [Bn(y)] = [B] but [Bny1(2)] # [Br+1(y)]-

A(x) ={n > 0: [By(z)] is special}.



Sturmian coloring of bounded type

A colored n-ball [B] is special if there exist z,y € VT such that
[Bn(2)] = [Bn(y)] = [B] but [Bny1(2)] # [Br+1(y)]-

A(x) ={n > 0: [By(z)] is special}.

A coloring ¢ is of bounded type if |A(z)| < oo, Vo € VT.
Denote 7(x) = max A(z).



Sturmian coloring of bounded type

A colored n-ball [B] is special if there exist z,y € VT such that
[Bn(2)] = [Bn(y)] = [B] but [Bny1(2)] # [Br+1(y)]-

A(x) ={n > 0: [By(z)] is special}.
A coloring ¢ is of bounded type if |A(z)| < oo, Vo € VT.
Denote 7(x) = max A(z).
Theorem (K-Lim)

If ¢ is a Sturmian coloring, then there exists a proper infinite
quotient graph X of T with

VX={mm+1m+2...,}
EX cA{li,i+1),i + 1,4 |i > m} U{[i,i]|i > m}

and a coloring ¢x on X such that ¢ = px om, where w : T — X
is the canonical quotient map and m = min{7(z) : x € VT'}.



More examples of bounded type Sturmian coloring

Example (Periodic configurations)

3 21 12 21 12 21 12 21 12

12 21 21 21 21 21 21 21 21

Example (Non-periodic edge configuration)

1 1 1 I 1
31T 2 T 121 T 1 111211211



Bounded type Sturmian coloring

Theorem (K-Lim, in preperateion)

Let ¢ be a Sturmian coloring of bounded type on T'. Then there
exist a periodic coloring ¢ on T and an infinite subtree Ty such
that

L. 9|z, = 9ln,.
2. T =2, fi(To) and fi(To) N f;(To) contains at most one
vertex for i # j.

3. fjo fi~' is a ¢-preserving automorphism from fi(Tp) to
fi(To) for alli,j.

The converse of the theorem does not hold in general. Such a
coloring should be a quasi-Sturmian coloring.



Sturmian coloring of unbounded type

Theorem (K-Lim)

If ¢ is a Sturmian coloring of unbounded type, then there exists

a proper quotient infinite graph X and a coloring ¢x on X such
that ¢ = ¢px o, where 7 is the projection from the reqular tree

T to X. Moreover, we have

VX ={0,1,2,...,}, EXc{[i,i+1]]i>0}uU{[i,i|i>0}

or

VX ={.,-2-1012...,}
EX Cc {[i,i+1]|i e Z}U{[i,i]|i € Z}.



Examples of unbounded Sturmian colorings

Example (with a periodic edge configuration)

Example (with a periodic vertex configuration)

c d c c d c d

s1 [S83 [S2 [S3 [s1 [S3 [S1 [S3 [S2 [S3 [S1 [S3 [S2
t1 €1 t3t3 toty t3tg t1t1 t3t3 t1¢1 t3t3 tatlo t3t3 Tty t3t3 ta o

Example

S1 59 59 S1 S1 S9 59 S1 S92 59
t1tr 1t toty 1ty t1t1 t1to toty t1t1 t1to toty
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