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Complexity of infinite words

Consider sequences in AN
= {a, b}N.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab . . .

abaababaabaababaababaabaababaababaabaababaabaab . . .

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb . . .



Subword complexity (Factor complexity)

The subword complexity for an infinite word u ∈ AN
= {a, b}N

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab . . .

abaababaabaababaababaabaababaababaabaababaabaab . . .

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb . . .



Subword complexity

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab . . .

p(1) = 2 a, b

abaababaabaababaababaabaababaababaabaababaabaab . . .

p(1) = 2 a, b

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb . . .

p(1) = 2 a, b



Subword complexity

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab . . .

p(1) = 2, p(2) = 3 ab, ba, aa

abaababaabaababaababaabaababaababaabaababaabaab . . .

p(1) = 2, p(2) = 3 ab, ba, aa

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb . . .

p(1) = 2, p(2) = 4 ab, ba, aa, bb



Subword complexity

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab . . .

p(1) = 2, p(2) = 3, p(3) = 3 aba, baa, aab

abaababaabaababaababaabaababaababaabaababaabaab . . .

p(1) = 2, p(2) = 3, p(3) = 4 aba, baa, aab, bab

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb . . .

p(1) = 2, p(2) = 4, p(3) = 8 aba, bab, aaa, bba, aab, bbb, abb, baa



Subword complexity

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab . . .

p(1) = 2, p(2) = 3, p(3) = 3, p(4) = 3

abaababaabaababaababaabaababaababaabaababaabaab . . .

p(1) = 2, p(2) = 3, p(3) = 4, p(4) = 5

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb . . .

p(1) = 2, p(2) = 4, p(3) = 8, p(4) = 16



Subword complexity

pu(n) = the number of different subwords of length n in u.

abaabaabaabaabaabaabaabaabaabaabaabaabaabaabaab . . .

p(1) = 2, p(2) = 3, p(3) = 3, p(4) = 3, p(n) = 3

abaababaabaababaababaabaababaababaabaababaabaab . . .

p(1) = 2, p(2) = 3, p(3) = 4, p(4) = 5, p(n) = n+ 1

abaabbababaaaabbbabbaabbbababbbbbabbabaaabababb . . .

p(1) = 2, p(2) = 4, p(3) = 8, p(4) = 16, p(n) = 2
n



Subword complexity and Sturmian word

Theorem (Hedlund-Morse (1940))

The followings are equivalent:

1. The infinite word u is eventually periodic.

2. The subword complexity pu satisfies pu(n+ 1) = pu(n) for
some n > 0.

3. The subword complexity pu is bounded.

Definition
An infinite word u is called Sturmian if Pu(n) = n+ 1.

Sturmian words have the lowest complexity among

non-eventually periodic words.
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A regular tree

T is k-regular tree,
i.e., each vertex

has k edges.

All edge lengths = 1.



A vertex coloring of 3-regular tree

A coloring of T is a

map φ : V T → A.

V T : vertex set of T .
A : alphabet.



A periodic coloring of 3-regular tree



Another periodic coloring of 3-regular tree



Bn(x) = {y ∈ V T ∪ ET : d(x, y) ≤ n}. (ET : edge set of T )
[Bn(x)] : equivalent class by color-preserving isomorphisms.

1-balls



Bn(x) = {y ∈ V T ∪ ET : d(x, y) ≤ n}. (ET : edge set of T )
[Bn(x)] : equivalent class by color-preserving isomorphisms.

1-balls



2-balls



Finite quotient graph

A B C

•
A

•
B

•
C



Periodic coloring on the regular tree

G = Aut(T ) : the group of automorphisms of T , a locally

compact topological group with compact-open topology.

Definition
A coloring φ : V T → A is periodic if there exists a subgroup

Γ ⊂ G such that Γ\T is a finite graph and φ is Γ-invariant, i.e.

φ(γx) = φ(x), for all x ∈ V T and γ ∈ Γ.

Note that we do not require Γ to be a discrete subgroup of G.



Subball complexity of periodic colorings

The subball complexity bφ(n) of φ is the number of colored

n-balls by φ.



Subball complexity of periodic colorings

The subball complexity bφ(n) of φ is the number of colored

n-balls by φ.

bφ(1) = 3, bφ(2) = 3



Subball complexity of periodic colorings

The subball complexity bφ(n) of φ is the number of colored

n-balls by φ.

Theorem (K-Lim)

Let φ : V T → A be a coloring. The followings are equivalent.

1. The coloring φ is periodic.

2. The subball complexity of φ satisfies bφ(n+ 1) = bφ(n) for
some n > 0.

3. The subball complexity bφ(n) is bounded.



Note that Γ\T has a structure of a graph of groups, i.e.,

the quotient graph X = Γ\T with stabilizers Γx = StabΓ(x)
attached to each class x ∈ V X ∪ EX.

From Γ\T to (T, φ) we only need [Γx : Γ∂(x)].

•
A

•
B

•
C

3 1 2 3

A B C



Motivation

� Discrete subgroup of Lie groups are important in studying

Riemannian manifolds of negative curvature.

� M locally symmetric :

M ∼= π1(M)\�M,

where Γ = π1(M) ⊂ G = Isom
+
(�M) discrete

M ∼= Γ\G/K

� Margulis arithmeticity used dichotomy of commensurator

group of a discrete subgroup Γ of G :

Comm(Γ) = {g ∈ G : gΓg−1 ∩ Γ ⊂f.i. Γ}



Motivation

� Comparison of Lie groups with automorphism group

Aut(T ) of a tree T : study of discrete subgroup of Aut(T ).

� A subgroup Γ is discrete if StabΓ(t) are all finite for all

t ∈ V T,ET .

� A discrete subgroup Γ is of finite covolume if

Vol(Γ\\T ) =
�

g∈V (Γ\T )

1

|StabΓ(t)|
< ∞.

Q1 Given Γ, is there an invariant of g ∈ Aut(T ) which
distinguishes commensurator elements?

Q2 It there any hierarchy for g ∈ G with respect to Γ?
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Example : Commensurator elements

Let Γ = �a1, · · · , ak : a2i = 1�, T Cayley graph of Γ, g ∈ Aut(T )

For t ∈ V T , a unique γt ∈ Γ sending the identity to t. Then

γ−1
g(t) ◦ g ◦ γt(id) = id.

Let φg(t) be the map γ−1
g(t) ◦ g ◦ γt restricted to the 1-sphere of

the identity. Then

φg : V T → Sk is a coloring,

where Sk is the symmetric group.

Theorem (Lubotzky-Mozes-Zimmer, Avni-Lim-Nevo)

g ∈ Comm(Γ) ⇔ φg is periodic ⇔ bφg is bounded.
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Let Γ = �a1, · · · , ak : a2i = 1�, T Cayley graph of Γ, g ∈ Aut(T )

For t ∈ V T , a unique γt ∈ Γ sending the identity to t. Then
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Sturmian colorings

Definition
A coloring φ of a k-regular tree T is called Sturmian if

bφ(n) = n+ 2.

Note that bφ(n) = n+ 2 is the minimal unbounded subball

complexity for non periodic coloring φ.

For any coloring φ consider the coloring preserving subgroup

Γφ = {g ∈ Aut(T ) : φ(gt) = φ(t)}.

Not if φ is not periodic, then the quotient graph Xφ = Γφ\T is

an infinite graph.

Question: How does Xφ look if φ is Sturmian?



A sturmian coloring of 3-regular tree



b(1) = 3

Quotient graph X:

◦ • • • • • • • • • · · ·2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2



b(2) = 4

Quotient graph X:

◦ • • • • • • • • • · · ·2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2



Quotient graph X:

◦ • • • • • • • • • · · ·2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2



A sturmian coloring of 3-regular tree (bounded type)



b(1) = 3

Quotient graph X:

• • • • • • • • • · · ·3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1



b(2) = 4

Quotient graph X:

• • • • • • • • • · · ·3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1



Quotient graph X:

• • • • • • • • • · · ·3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1



A sturmian coloring of 3-regular tree (unbounded type)



b(1) = 3

Quotient graph X:

· · · •
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

· · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1



b(2) = 4

Quotient graph X:

· · · •
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

· · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1



Quotient graph X:

· · · •
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

· · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1



Main Theorem

Let φ be a Sturmian coloring of a regular tree T .

Theorem (K-Lim)

There exists a group Γ acting on T such that φ is Γ-invariant,
so that φ is a lifting of a coloring φX on the quotient graph
X = Γ\T . The quotient graph X = G\T is one of the following
two types of graphs.

• • • • • • · · ·

· · · • • • • • • • • · · ·



Colorings on the 2-regular tree and bi-infinite words

In the 2-regular tree, colored n-balls are 2n+ 1-words

indentified with revered words.

A bi-infinite Sturmian word:

· · · a b a a b a b a a b a a b · · ·

• • • • • • • • •

b(n) =
1

2
·
�
p(2n+ 1) + # of palindromic (2n+ 1)-word

�

=
1

2
·
�
(2n+ 2) + 2

�
= n+ 2.
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Colorings on the 2-regular tree and bi-infinite words

In the 2-regular tree, colored n-balls are 2n+ 1-words

indentified with revered words.

A bi-infinite Sturmian word:

· · · a b a a b a b a a b a a b · · ·

• • • • • • • • •

b(n) =
1

2
·
�
p(2n+ 1) + # of palindromic (2n+ 1)-word

�

=
1

2
·
�
(2n+ 2) + 2

�
= n+ 2.



Other Sturmian colorings on the 2-regular tree

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

Also “non-irrational ” colorings:

• • • • • • • • • • •

• • • • • • • • • • •



Sturmian coloring of bounded type

A colored n-ball [B] is special if there exist x, y ∈ V T such that

[Bn(x)] = [Bn(y)] = [B] but [Bn+1(x)] �= [Bn+1(y)].

Λ(x) = {n ≥ 0 : [Bn(x)] is special}.

A coloring φ is of bounded type if |Λ(x)| < ∞, ∀x ∈ V T .
Denote τ(x) = maxΛ(x).

Theorem (K-Lim)

If φ is a Sturmian coloring, then there exists a proper infinite
quotient graph X of T with

V X = {m,m+ 1,m+ 2, . . . , },
EX ⊂ {[i, i+ 1], [i+ 1, i] | i ≥ m} ∪ {[i, i] | i ≥ m}

and a coloring φX on X such that φ = φX ◦ π, where π : T → X
is the canonical quotient map and m = min{τ(x) : x ∈ V T}.
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More examples of bounded type Sturmian coloring

Example (Periodic configurations)

• • • • • • • • • · · ·3 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2

◦ • • • • • • • • • · · ·1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

Example (Non-periodic edge configuration)

• •
◦

• • •
◦

•
◦

•
◦

• • •
◦

· · ·
3 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1

1 1 1 1 1



Bounded type Sturmian coloring

Theorem (K-Lim, in preperateion)

Let φ be a Sturmian coloring of bounded type on T . Then there
exist a periodic coloring φ̃ on T and an infinite subtree T0 such
that

1. φ̃|T0 = φ|T0.

2. T =
�∞

i=0 fi(T0) and fi(T0) ∩ fj(T0) contains at most one
vertex for i �= j.

3. fj ◦ fi−1 is a φ-preserving automorphism from fi(T0) to
fj(T0) for all i, j.

The converse of the theorem does not hold in general. Such a

coloring should be a quasi-Sturmian coloring.



Sturmian coloring of unbounded type

Theorem (K-Lim)

If φ is a Sturmian coloring of unbounded type, then there exists
a proper quotient infinite graph X and a coloring φX on X such
that φ = φX ◦ π, where π is the projection from the regular tree
T to X. Moreover, we have

V X = {0, 1, 2, . . . , }, EX ⊂ {[i, i+ 1] | i ≥ 0} ∪ {[i, i] | i ≥ 0}

or

V X = {. . . ,−2,−1, 0, 1, 2, . . . , },
EX ⊂ {[i, i+ 1] | i ∈ Z} ∪ {[i, i] | i ∈ Z}.



Examples of unbounded Sturmian colorings

Example (with a periodic edge configuration)

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

t t t t t t t t t t t t t t t t t t t t
s s s s s s s s s s

Example (with a periodic vertex configuration)

•
c

•
d

•
c

•
c

•
d

•
c

•
d

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

t1 t1 t3 t3 t2 t2 t3 t3 t1 t1 t3 t3 t1 t1 t3 t3 t2 t2 t3 t3 t1 t1 t3 t3 t2 t2
s1 s3 s2 s3 s1 s3 s1 s3 s2 s3 s1 s3 s2
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◦

•
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•
◦
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◦

•
◦

•
◦

•
◦

t1 t1 t1 t2 t2 t1 t1 t1 t1 t1 t1 t2 t2 t1 t1 t1 t1 t2 t2 t1

s1 s2 s2 s1 s1 s2 s2 s1 s2 s2
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