The Spaces

Isometries

Three dimensions

Proper Actions

Margulis space-times

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Lorentzian Geometry I

Todd A. Drumm (Howard Univeristy, USA)

ICTP

22 August 2015 Trieste, Italy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Basic Definitions

- E^{n,1} (n ≥ 2) is the Lorentzian (flat) affine space with n spatial directions
 - The tangent space: **R**^{*n*,1}
 - Choose a point $o \in E^{n,1}$ as the origin
 - Identification of E and its tangent space: $p \leftrightarrow v = p o$

Basic Definitions

- E^{n,1} (n ≥ 2) is the Lorentzian (flat) affine space with n spatial directions
 - The tangent space: **R**^{*n*,1}
 - Choose a point $o \in E^{n,1}$ as the origin
 - Identification of E and its tangent space: $p \leftrightarrow v = p o$
- The tangent space **R**^{*n*,1}

•
$$v = [v_1, \ldots, v_n, v_{n+1}]^7$$

• The (standard, indefinite) inner product:

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{v}_1 \mathbf{w}_1 + \ldots + \mathbf{v}_n \mathbf{w}_n - \mathbf{v}_{n+1} \mathbf{w}_{n+1}$$

- O(n,1) is the group of matrices which *preserve* the inner product
 - In particular, for any v, w $\in \mathbf{R}^{n,1}$ and any $A \in \mathrm{O}(n,1)$

$$A \mathsf{v} \cdot A \mathsf{w} = \mathsf{v} \cdot \mathsf{w}$$

- SO(n, 1) is the subgroup whose members have determinant 1.
- O^o(n,1) = SO^o(n,1) is the connected subgroup containing the identity

Isometries

Three dimensions

Proper Actions

Margulis space-times

- $N = \{v \in \mathbf{R}^{n,1} | v \cdot v = 0\}$ is the *light cone* (or *null cone*) and vectors lying here are called *lightlike*
 - Inside cone: v such that $v \cdot v < 0$, are called *timelike*
 - Outside cone: v such that $v \cdot v > 0$, are called *spacelike*
- Time orientation
 - Choice of nappe, and timelike vectors upper nappe, is a choice of *time orientation*
 - Choose the upper nappe to be the *future*; vectors on or inside the upper nappe are *future pointing*

Models of Hyperbolic Spaces

- One sheet of hyperboloid
 - $\mathsf{H}^n \cong \{\mathsf{v} \in \mathbf{R}^{n,1} | \mathsf{v} \cdot \mathsf{v} = -1, \text{ and future pointing}\}$
 - $w \cdot w > 0$ for w tangent to hyperbola.
 - Defined metric has constant curvature -1.
 - Geodesics = {Planes thru o} \cap {hyperboloid}
- Projective model
 - $v \sim w$ if v = kw for $k \neq 0$, written (v) = (w)
 - $H^n \cong \{ v \in \mathbf{R}^{n,1} | v \cdot v < 0 \} / \sim$
 - Homogeneous coordinates
 (v) = [v₁ : v₂ : ... : v_n]
- Klein model
 - Project onto $v_n = 1$ plane.
 - Geodesics are straight lines.
 - Not conformal.

Isometries

- Linear Isometries
 - O(n, 1) has four connected components.
 - Isometries of Hⁿ
- Affine isometries: $\mathcal{A} = (A, a) \in \mathsf{Isom}(\mathsf{E})$
 - $A \in O(n, 1)$ and $a \in \mathbf{R}^{n, 1}$
 - $\mathcal{A}(x) = \mathcal{A}(x) + \mathsf{a}$

Proposition

For any affine isometry, $x \mapsto A(x) + a$, if A does not have 1 as an eigenvalue, then the map has a fixed point.

Proof.

If A does not have 1 has an eigenvalue, you can always solve A(x) + a = x, or (A - I)(x) = -a

Three dimensions

• More on products

•
$$v^{\perp} = \{w | w \cdot v = 0\}$$

- If v is spacelike, v[⊥] defines a geodesic.
- If v is lightlike, v^{\perp} is tangent to lightcone at v.
- (Lorentzian) cross product
 - $v \times w$ is (Lorentzian) orthogonal to v and w.
 - Defined by $v \cdot (w \times u) = Det(v, w, u)$.
- Upper half plane model of the hyperbolic plane
 - $U = \{z \in \mathbf{C} | \operatorname{Im}(z) > 0\}$ with boundary $\mathbf{R} \cup \{\infty\}$.
 - Geodesics are arcs of circles centered on R or vertical rays.
 - $\mathsf{Isom}^+(\mathsf{H}^2) \cong \mathsf{PSL}(2,\mathbf{R})$

$A \in SO^{o}(2,1)$

- All A have 1 eigenvalue.
- Classification: Nonidentity A is said to be ...
 - *elliptic* if it has complex eigenvalues.
 - The 2 complex eigenvectors are conjugate.
 - The fixed eigenvector A⁰ is timelike.
 - Acts like rotation about fixed axis.
 - *parabolic* if 1 is the only eigenvalue.
 - The fixed eigenvector A^0 is *lightlike*.
 - On $\mathsf{H}^2,$ fixed point on boundary and orbits are horocycles
 - hyperbolic if it has 3 distinct real eigenvalues $\lambda < 1 < \lambda^{-1}$
 - Fixed eigenvector A⁰ is spacelike.
 - The *contracting* eigenvector A^- and *expanding* eigenvector A^+ are lightlike.
 - $A^0 \cdot A^{\pm} = 0$
- A(x) = A(x) + a is called *elliptic /paraobolic/ hyperbolic* if A is elliptice /parabolic/ hyperbolic.

Hyperbolic affine transformations

- More on linear part
 - Choose A^{\pm} are future pointing and have Euclidean length 1.
 - Choose so that $A^0 \cdot (A^- \times A^+) > 0$ and $A^0 \cdot A^0 = 1$.
 - $(A^0)^{\perp}$ determines the *axis* of A on the hyperbolic plane.
- The Margulis invariant for a hyperbolic $\mathcal{A} = (A, a)$
 - There exist a unique invariant line C_A parallel to A^0 .
 - The Margulis invariant: for any $x \in C_A$

$$\alpha(\mathcal{A}) = (\mathcal{A}(x) - x) \cdot \mathcal{A}^0$$

- Signed Lorentzian length of unique closed geo in $\mathsf{E}^{2,1}/\langle\mathcal{A}\rangle.$
- α(A) = 0 iff A has a fixed point.
- Invariant given choice of $x \in E$.
- Invariant under conjugation (α is a *class function*), and determines conjugation class for a fixed linear part.
- $\alpha(\mathcal{A}^n) = |n| \alpha(\mathcal{A})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proper actions

- For any discrete G action on a locally compact Hausdorff X, if G is proper then X/G is Hausdorff.
 - Alternatively, G is to act freely properly discontinuously on X.
 - (Bieberbach) For X = Rⁿ and discrete G ⊂ lsom(X), if G acts properly on X then G has a finite index subgroup ≃ Z^m for m <= n.
- Cocompact affine actions

Conjecture (Auslander)

For $X = \mathbf{R}^n$ and discrete $G \subset Aff(\mathbf{R}^n)$, if G acts properly and cocompactly on X then G is virtually solvable.

- No free groups of rank >= 2 in virtually solvable gps.
- True up to dimension 6.
- (Milnor) Is Auslander Conj. true if "cocompact" is removed? NO.

Margulis Opposite Sign Lemma

Lemma (Margulis' Opposite Sign)

If $\alpha(\mathcal{A})$ and $\alpha(\mathcal{B})$ have opposite signs then $\langle \mathcal{A}, \mathcal{B} \rangle$ does not act properly on $E^{2,1}$.

- The signs for elements of proper actions must be the same.
- Opposite Sign Lemma true in E^{n,n-1}
 - When n is odd, α(A⁻¹) = −α(A), so no groups with free groups (rank ≥ 2) act properly.
 - Can find counterexamples to "noncompact Auslander" in $\mathsf{E}^{2,1},\mathsf{E}^{4,3},\ldots$

• First examples

Theorem (Margulis)

There exist discrete free groups of $Aff(E^{2,1})$ that act properly on $E^{2,1}$.

- Next examples
 - Free discrete groups in $\langle A_1, A_2, ..., A_n \rangle \subset \text{Isom}(\mathsf{H}^2)$.
 - Domain bounded by 2n nonintersecting geodesics ℓ_n^{\pm} such that $A_i(\ell_i^-) = \ell_i^+$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Crooked Planes

- Problem: extend notion of lines in H^2 to $E^{2,1}$.
- A Crooked Plane
 - *Stem* is perpendicular to spacelike vector v through *vertex p* inside the lightcone at *p*.
 - *Spine* is the line through *p* and parallel to v
 - Wings are half planes tangent to light cones at boundaries of stem, called the *hinges*.
- A *Crooked half-space* is one of the two regions in E^{2,1} bounded by a crooked plane.

Crooked domains

Theorem (D)

Given discrete $\Gamma = \langle \mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n \rangle \subset \text{Isom}(\mathsf{E}^{2,1})$. If there exist 2n mutually disjoint crooked half spaces \mathcal{H}_n^{\pm} such that $\mathcal{A}_i(\mathcal{H}_i^-) = \mathsf{E}^{2,1} \setminus \mathcal{H}_i^+$, then Γ is proper.

- Example of a "ping-pong" theorem.
- Finding proper actions
 - Start with a free discrete linear group.
 - Find *disjoint* halfspaces whose complement is domain for a linear part.
 - Separate half planes, giving rise to proper affine group.

The Spaces

Isometries

Three dimensions

Proper Actions

(日)、

э

Margulis space-times

Crooked domains

• Two pair of *disjoint* halfspaces at the origin.

• Separated

Results

Theorem (D)

Given every free discrete group $G \subset SO(2,1)$ there exists a proper subgroup $\Gamma \subset Isom(E^{2,1})$ whose underlying linear group is G.

Theorem (Danciger- Guéritaud - Kassel)

For every discrete $\Gamma \subset \text{Isom}(\mathsf{E}^{2,1})$ acting properly on $\mathsf{E}^{2,1}$, there exists a crooked fundamental domain for the action.

References

- Lorentzian Geometry, in Geometry & Topology of Character Varieties, IMS Lecture Note Series 23 (2012), pp. 247 280
- (with V. Charette) Complete Lorentz 3-manifolds, Cont. Math. 630, (2015), pp. 43 72