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Basic Definitions

• En,1 (n ≥ 2) is the Lorentzian (flat) affine space with n spatial
directions
• The tangent space: Rn,1

• Choose a point o ∈ En,1 as the origin
• Identification of E and its tangent space: p ↔ v = p − o

• The tangent space Rn,1

• v = [v1, . . . , vn, vn+1]T

• The (standard, indefinite) inner product:

v · w = v1w1 + . . .+ vnwn − vn+1wn+1

• O(n, 1) is the group of matrices which preserve the inner
product
• In particular, for any v,w ∈ Rn,1 and any A ∈ O(n, 1)

Av · Aw = v · w

• SO(n, 1) is the subgroup whose members have determinant 1.
• Oo(n, 1) = SOo(n, 1) is the connected subgroup containing

the identity
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Vectors

• N = {v ∈ Rn,1|v · v = 0} is the light cone (or null cone) and
vectors lying here are called lightlike
• Inside cone: v such that v · v < 0, are called timelike
• Outside cone: v such that v · v > 0, are called spacelike

• Time orientation
• Choice of nappe, and timelike vectors upper nappe, is a choice

of time orientation
• Choose the upper nappe to be the future; vectors on or inside

the upper nappe are future pointing
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Models of Hyperbolic Spaces

• One sheet of hyperboloid
• Hn ∼= {v ∈ Rn,1|v · v = −1, and future pointing}
• w · w > 0 for w tangent to hyperbola.
• Defined metric has constant curvature −1.
• Geodesics = {Planes thru o} ∩ {hyperboloid}

• Projective model
• v ∼ w if v = kw for k 6= 0, written (v) = (w)
• Hn ∼= {v ∈ Rn,1|v · v < 0}/ ∼
• Homogeneous coordinates

(v) = [v1 : v2 : ... : vn]

• Klein model
• Project onto vn = 1 plane.
• Geodesics are straight lines.
• Not conformal.
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Isometries

• Linear Isometries
• O(n, 1) has four connnected components.
• Isometries of Hn

• Affine isometries: A = (A, a) ∈ Isom(E)
• A ∈ O(n, 1) and a ∈ Rn,1

• A(x) = A(x) + a

Proposition

For any affine isometry, x 7→ A(x) + a, if A does not have 1 as an
eigenvalue, then the map has a fixed point.

Proof.
If A does not have 1 has an eigenvalue, you can always solve
A(x) + a = x , or (A− I )(x) = −a
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Three dimensions

• More on products
• v⊥ = {w|w · v = 0}

• If v is spacelike, v⊥ defines a geodesic.
• If v is lightlike, v⊥ is tangent to lightcone at v.

• (Lorentzian) cross product
• v × w is (Lorentzian) orthogonal to v and w.
• Defined by v · (w × u) = Det(v,w, u).

• Upper half plane model of the hyperbolic plane
• U = {z ∈ C|Im(z) > 0} with boundary R ∪ {∞}.
• Geodesics are arcs of circles centered on R or vertical rays.
• Isom+(H2) ∼= PSL(2,R)
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A ∈ SOo(2, 1)

• All A have 1 eigenvalue.

• Classification: Nonidentity A is said to be ...
• elliptic if it has complex eigenvalues.

• The 2 complex eigenvectors are conjugate.
• The fixed eigenvector A0 is timelike.
• Acts like rotation about fixed axis.

• parabolic if 1 is the only eigenvalue.
• The fixed eigenvector A0 is lightlike.
• On H2, fixed point on boundary and orbits are horocycles

• hyperbolic if it has 3 distinct real eigenvalues λ < 1 < λ−1

• Fixed eigenvector A0 is spacelike.
• The contracting eigenvector A− and expanding eigenvector

A+ are lightlike.
• A0 · A± = 0

• A(x) = A(x) + a is called elliptic /paraobolic/ hyperbolic if A
is elliptice /parabolic/ hyperbolic.
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Hyperbolic affine transformations

• More on linear part
• Choose A± are future pointing and have Euclidean length 1.
• Choose so that A0 · (A− × A+) > 0 and A0 · A0 = 1.
• (A0)⊥ determines the axis of A on the hyperbolic plane.

• The Margulis invariant for a hyperbolic A = (A, a)
• There exist a unique invariant line CA parallel to A0.
• The Margulis invariant: for any x ∈ CA

α(A) = (A(x)− x) · A0

• Signed Lorentzian length of unique closed geo in E2,1/〈A〉.
• α(A) = 0 iff A has a fixed point.
• Invariant given choice of x ∈ E.
• Invariant under conjugation (α is a class function), and

determines conjugation class for a fixed linear part.
• α(An) = |n|α(A)
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Proper actions

• For any discrete G action on a locally compact Hausdorff X ,
if G is proper then X/G is Hausdorff.
• Alternatively, G is to act freely properly discontinuously on X .
• (Bieberbach) For X = Rn and discrete G ⊂ Isom(X ), if G acts

properly on X then G has a finite index subgroup ∼= Zm for
m <= n.

• Cocompact affine actions

Conjecture (Auslander)

For X = Rn and discrete G ⊂ Aff(Rn), if G acts properly and
cocompactly on X then G is virtually solvable.

• No free groups of rank >= 2 in virtually solvable gps.
• True up to dimension 6.
• (Milnor) Is Auslander Conj. true if “cocompact” is removed?

NO.
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Margulis Opposite Sign Lemma

Lemma (Margulis’ Opposite Sign)

If α(A) and α(B) have opposite signs then 〈A,B〉 does not act
properly on E2,1.

• The signs for elements of proper actions must be the same.

• Opposite Sign Lemma true in En,n−1

• When n is odd, α(A−1) = −α(A), so no groups with free
groups (rank ≥ 2) act properly.

• Can find counterexamples to “noncompact Auslander” in
E2,1,E4,3, ....
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Margulis space-times

• First examples

Theorem (Margulis)

There exist discrete free groups of Aff(E2,1) that act properly on
E2,1.

• Next examples
• Free discrete groups in 〈A1,A2, ...,An〉 ⊂ Isom(H2).
• Domain bounded by 2n nonintersecting geodesics `±n such that

Ai (`
−
i ) = `+i .
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Crooked Planes

• Problem: extend notion of lines in
H2 to E2,1.

• A Crooked Plane
• Stem is perpendicular to

spacelike vector v through vertex
p inside the lightcone at p.
• Spine is the line through p

and parallel to v

• Wings are half planes tangent to
light cones at boundaries of
stem, called the hinges.

• A Crooked half-space is one of the
two regions in E2,1 bounded by a
crooked plane.
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Crooked domains

Theorem (D)

Given discrete Γ = 〈A1,A2, ...,An〉 ⊂ Isom(E2,1). If there exist 2n
mutually disjoint crooked half spaces H±

n such that
Ai (H−

i ) = E2,1 \ H+
i , then Γ is proper.

• Example of a “ping-pong” theorem.

• Finding proper actions
• Start with a free discrete linear group.
• Find disjoint halfspaces whose complement is domain for a

linear part.
• Separate half planes, giving rise to proper affine group.
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Crooked domains

• Two pair of disjoint halfspaces at the origin.

• Separated
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Results

Theorem (D)

Given every free discrete group G ⊂ SO(2, 1) there exists a proper
subgroup Γ ⊂ Isom(E2,1) whose underlying linear group is G.

Theorem (Danciger- Guéritaud - Kassel)

For every discrete Γ ⊂ Isom(E2,1) acting properly on E2,1, there
exists a crooked fundamental domain for the action.

References

• Lorentzian Geometry, in Geometry & Topology of Character
Varieties, IMS Lecture Note Series 23 (2012), pp. 247 280

• (with V. Charette) Complete Lorentz 3-manifolds, Cont.
Math. 630, (2015), pp. 43 72


	The Spaces
	Isometries
	Three dimensions
	Proper Actions
	Margulis space-times

