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Basic Definitions

e E™! (n>2)is the Lorentzian (flat) affine space with n spatial
directions
e The tangent space: R™!
e Choose a point o € E™! as the origin
o |dentification of E and its tangent space: p<>v=p—o0



Basic Definitions

e E™! (n>2) is the Lorentzian (flat) affine space with n spatial
directions
e The tangent space: R™!
e Choose a point o € E™! as the origin
o |dentification of E and its tangent space: p<>v=p—o0
e The tangent space R™!
o v =1[vi,. ., Vp Vor1]
e The (standard, indefinite) inner product:

VW= WViW] + ...+ VaWy — Vpp1Wpi1

e O(n,1) is the group of matrices which preserve the inner
product
e In particular, for any v,w € R™! and any A € O(n,1)

Av-Aw =v-w

e SO(n,1) is the subgroup whose members have determinant 1.
e 0°(n,1) =S0°(n, 1) is the connected subgroup containing
the identity



Vectors

e N={veR"|v.v=0}is the light cone (or null cone) and
vectors lying here are called lightlike
e Inside cone: v such that v-v < 0, are called timelike
e OQutside cone: v such that v-v > 0, are called spacelike
e Time orientation
e Choice of nappe, and timelike vectors upper nappe, is a choice

of time orientation
e Choose the upper nappe to be the future; vectors on or inside

the upper nappe are future pointing




Models of Hyperbolic Spaces

e One sheet of hyperboloid
e H”= {v e R™|v-v = -1, and future pointing}
e w-w > 0 for w tangent to hyperbola.
e Defined metric has constant curvature —1.
o Geodesics = {Planes thru o} N {hyperboloid}
e Projective model
o v~ wifv=kw for k # 0, written (v) = (w)
e H"2 {veR™v.-v<0}/~
e Homogeneous coordinates
(V)=[vi:va:. vy
e Klein model
e Project onto v, = 1 plane.
e Geodesics are straight lines.
e Not conformal.



[sometries

e Linear Isometries

e O(n,1) has four connnected components.
e Isometries of H”

e Affine isometries: A = (A,a) € Isom(E)
e A€ 0O(n,1) and a € R™!
o A(x)=A(x)+a

Proposition
For any affine isometry, x — A(x) + a, if A does not have 1 as an
eigenvalue, then the map has a fixed point.

Proof.

If A does not have 1 has an eigenvalue, you can always solve
Ax)+a=x,or (A—-1)(x)=—a

O



Three dimensions

e More on products
o vi={w|w-v=0}
o If v is spacelike, v* defines a geodesic.
e If v is lightlike, v is tangent to lightcone at v.
e (Lorentzian) cross product

e v x w is (Lorentzian) orthogonal to v and w.
e Defined by v - (w x u) = Det(v, w, u).

e Upper half plane model of the hyperbolic plane
e U= {z e C|Im(z) > 0} with boundary RU {co}.
e Geodesics are arcs of circles centered on R or vertical rays.
e Isom™(H?) = PSL(2,R)



A€ S0°(2,1)

e All A have 1 eigenvalue.

o Classification: Nonidentity A is said to be ...
o elliptic if it has complex eigenvalues.
e The 2 complex eigenvectors are conjugate.
e The fixed eigenvector A° is timelike.
e Acts like rotation about fixed axis.
e parabolic if 1 is the only eigenvalue.

o The fixed eigenvector A is lightlike.
e On H?, fixed point on boundary and orbits are horocycles

e hyperbolic if it has 3 distinct real eigenvalues A <1 < A\~1
e Fixed eigenvector A° is spacelike.
e The contracting eigenvector A~ and expanding eigenvector
A" are lightlike.
o A AT =0
e A(x) = A(x) + a is called elliptic /paraobolic/ hyperbolic if A
is elliptice /parabolic/ hyperbolic.



Hyperbolic affine transformations

e More on linear part
e Choose AT are future pointing and have Euclidean length 1.
e Choose so that A - (A~ x A*) >0and A°- A" = 1.
e (A%)L determines the axis of A on the hyperbolic plane.

e The Margulis invariant for a hyperbolic A = (A, a)

o There exist a unique invariant line C4 parallel to A°.
e The Margulis invariant: for any x € Cy

a(A) = (A(x) — x) - A°

Signed Lorentzian length of unique closed geo in E>*/({A).
a(A) = 0 iff A has a fixed point.

Invariant given choice of x € E.

Invariant under conjugation (« is a class function), and
determines conjugation class for a fixed linear part.

o o A") = |n|a(A)



Proper actions

e For any discrete G action on a locally compact Hausdorff X,
if G is proper then X /G is Hausdorff.

e Alternatively, G is to act freely properly discontinuously on X.
o (Bieberbach) For X = R" and discrete G C Isom(X), if G acts
properly on X then G has a finite index subgroup = Z™ for

m <= n.

e Cocompact affine actions

Conjecture (Auslander)

For X = R" and discrete G C Aff(R"), if G acts properly and
cocompactly on X then G is virtually solvable.

e No free groups of rank >= 2 in virtually solvable gps.

e True up to dimension 6.

e (Milnor) Is Auslander Conj. true if “cocompact” is removed?
NO.



Margulis Opposite Sign Lemma

Lemma (Margulis’ Opposite Sign)
If a(A) and a(B) have opposite signs then (A, B) does not act
properly on E>1.

e The signs for elements of proper actions must be the same.
e Opposite Sign Lemma true in E""~1
e When nis odd, a(A~1) = —a(A), so no groups with free
groups (rank > 2) act properly.
e Can find counterexamples to “noncompact Auslander” in
E>1 B4 ..



Margulis space-times

e First examples

Theorem (Margulis)
There exist discrete free groups of Aff(E?1) that act properly on
E21.

e Next examples

e Free discrete groups in (A1, Ay, ..., A,) C Isom(H?).
e Domain bounded by 2n nonintersecting geodesics £ such that

A7) =t



Crooked Planes

e Problem: extend notion of lines in
H2 to E21.

e A Crooked Plane

e Stem is perpendicular to
spacelike vector v through vertex
p inside the lightcone at p.

e Spine is the line through p
and parallel to v

o Wings are half planes tangent to
light cones at boundaries of
stem, called the hinges.

o A Crooked half-space is one of the
two regions in E>! bounded by a
crooked plane.



Crooked domains

Theorem (D)

Given discrete T = (A1, Ay, ..., A,) C lsom(E%1). If there exist 2n
mutually disjoint crooked half spaces HX such that
Ai(H;) =E>*\ U, thenT is proper.

e Example of a “ping-pong” theorem.
e Finding proper actions
e Start with a free discrete linear group.
e Find disjoint halfspaces whose complement is domain for a

linear part.
e Separate half planes, giving rise to proper affine group.



Crooked domains

e Two pair of disjoint halfspaces at the origin.

e Separated




Results

Theorem (D)

Given every free discrete group G C SO(2, 1) there exists a proper
subgroup I C Isom(E?!) whose underlying linear group is G.

Theorem (Danciger- Guéritaud - Kassel)

For every discrete I C Isom(E?') acting properly on E??, there
exists a crooked fundamental domain for the action.
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