Lorentzian Geometry I

Todd A. Drumm (Howard Univeristy, USA)

ICTP

22 August 2015
Trieste, Italy

Basic Definitions

- $\mathrm{E}^{n, 1}(n \geq 2)$ is the Lorentzian (flat) affine space with n spatial directions
- The tangent space: $\mathbf{R}^{n, 1}$
- Choose a point $o \in \mathrm{E}^{n, 1}$ as the origin
- Identification of E and its tangent space: $p \leftrightarrow \mathrm{v}=p-0$

Basic Definitions

- $\mathrm{E}^{n, 1}(n \geq 2)$ is the Lorentzian (flat) affine space with n spatial directions
- The tangent space: $\mathbf{R}^{n, 1}$
- Choose a point $o \in \mathrm{E}^{n, 1}$ as the origin
- Identification of E and its tangent space: $p \leftrightarrow \mathrm{v}=p-0$
- The tangent space $\mathbf{R}^{n, 1}$
- $\mathrm{v}=\left[\mathrm{v}_{1}, \ldots, v_{n}, v_{n+1}\right]^{T}$
- The (standard, indefinite) inner product:

$$
v \cdot w=v_{1} w_{1}+\ldots+v_{n} w_{n}-v_{n+1} w_{n+1}
$$

- $\mathrm{O}(n, 1)$ is the group of matrices which preserve the inner product
- In particular, for any $\mathrm{v}, \mathrm{w} \in \mathbf{R}^{n, 1}$ and any $A \in \mathrm{O}(n, 1)$

$$
A v \cdot A w=v \cdot w
$$

- $\mathrm{SO}(n, 1)$ is the subgroup whose members have determinant 1 .
- $\mathrm{O}^{\circ}(n, 1)=\mathrm{SO}^{\circ}(n, 1)$ is the connected subgroup containing the identity

Vectors

- $N=\left\{v \in \mathbf{R}^{n, 1} \mid v \cdot v=0\right\}$ is the light cone (or null cone) and vectors lying here are called lightlike
- Inside cone: v such that v•v<0, are called timelike
- Outside cone: v such that $\mathrm{v} \cdot \mathrm{v}>0$, are called spacelike
- Time orientation
- Choice of nappe, and timelike vectors upper nappe, is a choice of time orientation
- Choose the upper nappe to be the future; vectors on or inside the upper nappe are future pointing

Models of Hyperbolic Spaces

- One sheet of hyperboloid
- $H^{n} \cong\left\{v \in \mathbf{R}^{n, 1} \mid v \cdot v=-1\right.$, and future pointing $\}$
- $w \cdot w>0$ for w tangent to hyperbola.
- Defined metric has constant curvature -1 .
- Geodesics $=\{$ Planes thru $o\} \cap\{$ hyperboloid $\}$
- Projective model
- $v \sim w$ if $v=k w$ for $k \neq 0$, written ($v)=(w)$
- $\mathrm{H}^{n} \cong\left\{\mathrm{v} \in \mathbf{R}^{n, 1} \mid \mathrm{v} \cdot \mathrm{v}<0\right\} / \sim$
- Homogeneous coordinates

$$
(v)=\left[v_{1}: v_{2}: \ldots: v_{n}\right]
$$

- Klein model
- Project onto $v_{n}=1$ plane.
- Geodesics are straight lines.
- Not conformal.

Isometries

- Linear Isometries
- $O(n, 1)$ has four connnected components.
- Isometries of H^{n}
- Affine isometries: $\mathcal{A}=(A, a) \in \operatorname{Isom}(E)$
- $A \in \mathrm{O}(n, 1)$ and $\mathrm{a} \in \mathbf{R}^{n, 1}$
- $\mathcal{A}(x)=A(x)+a$

Proposition

For any affine isometry, $x \mapsto A(x)+a$, if A does not have 1 as an eigenvalue, then the map has a fixed point.

Proof.
If A does not have 1 has an eigenvalue, you can always solve $A(x)+\mathrm{a}=x$, or $(A-I)(x)=-\mathrm{a}$

Three dimensions

- More on products
- $\mathrm{v}^{\perp}=\{\mathrm{w} \mid \mathrm{w} \cdot \mathrm{v}=0\}$
- If v is spacelike, v^{\perp} defines a geodesic.
- If v is lightlike, v^{\perp} is tangent to lightcone at v .
- (Lorentzian) cross product
- $\mathrm{v} \times \mathrm{w}$ is (Lorentzian) orthogonal to v and w .
- Defined by $\mathrm{v} \cdot(\mathrm{w} \times \mathrm{u})=\operatorname{Det}(\mathrm{v}, \mathrm{w}, \mathrm{u})$.
- Upper half plane model of the hyperbolic plane
- $U=\{z \in \mathbf{C} \mid \operatorname{lm}(z)>0\}$ with boundary $\mathbf{R} \cup\{\infty\}$.
- Geodesics are arcs of circles centered on \mathbf{R} or vertical rays.
- $\operatorname{lsom}^{+}\left(\mathrm{H}^{2}\right) \cong \operatorname{PSL}(2, \mathbf{R})$

$A \in \mathrm{SO}^{\circ}(2,1)$

- All A have 1 eigenvalue.
- Classification: Nonidentity A is said to be ...
- elliptic if it has complex eigenvalues.
- The 2 complex eigenvectors are conjugate.
- The fixed eigenvector A^{0} is timelike.
- Acts like rotation about fixed axis.
- parabolic if 1 is the only eigenvalue.
- The fixed eigenvector A^{0} is lightlike.
- On H^{2}, fixed point on boundary and orbits are horocycles
- hyperbolic if it has 3 distinct real eigenvalues $\lambda<1<\lambda^{-1}$
- Fixed eigenvector A^{0} is spacelike.
- The contracting eigenvector A^{-}and expanding eigenvector A^{+}are lightlike.
- $A^{0} \cdot A^{ \pm}=0$
- $\mathcal{A}(x)=A(x)+\mathrm{a}$ is called elliptic/paraobolic/ hyperbolic if A is elliptice /parabolic/ hyperbolic.

Hyperbolic affine transformations

- More on linear part
- Choose $A^{ \pm}$are future pointing and have Euclidean length 1.
- Choose so that $A^{0} \cdot\left(A^{-} \times A^{+}\right)>0$ and $A^{0} \cdot A^{0}=1$.
- $\left(A^{0}\right)^{\perp}$ determines the axis of A on the hyperbolic plane.
- The Margulis invariant for a hyperbolic $\mathcal{A}=(A, a)$
- There exist a unique invariant line $C_{\mathcal{A}}$ parallel to A^{0}.
- The Margulis invariant: for any $x \in C_{\mathcal{A}}$

$$
\alpha(\mathcal{A})=(\mathcal{A}(x)-x) \cdot A^{0}
$$

- Signed Lorentzian length of unique closed geo in $\mathrm{E}^{2,1} /\langle\mathcal{A}\rangle$.
- $\alpha(\mathcal{A})=0$ iff \mathcal{A} has a fixed point.
- Invariant given choice of $x \in E$.
- Invariant under conjugation (α is a class function), and determines conjugation class for a fixed linear part.
- $\alpha\left(\mathcal{A}^{n}\right)=|n| \alpha(\mathcal{A})$

Proper actions

- For any discrete G action on a locally compact Hausdorff X, if G is proper then X / G is Hausdorff.
- Alternatively, G is to act freely properly discontinuously on X.
- (Bieberbach) For $X=\mathbf{R}^{n}$ and discrete $G \subset \operatorname{Isom}(X)$, if G acts properly on X then G has a finite index subgroup $\cong \mathbb{Z}^{m}$ for $m<=n$.
- Cocompact affine actions

Conjecture (Auslander)
For $X=\mathbf{R}^{n}$ and discrete $G \subset \operatorname{Aff}\left(\mathbf{R}^{n}\right)$, if G acts properly and cocompactly on X then G is virtually solvable.

- No free groups of rank $>=2$ in virtually solvable gps.
- True up to dimension 6.
- (Milnor) Is Auslander Conj. true if "cocompact" is removed? NO.

Margulis Opposite Sign Lemma

Lemma (Margulis' Opposite Sign)
If $\alpha(\mathcal{A})$ and $\alpha(\mathcal{B})$ have opposite signs then $\langle\mathcal{A}, \mathcal{B}\rangle$ does not act properly on $\mathrm{E}^{2,1}$.

- The signs for elements of proper actions must be the same.
- Opposite Sign Lemma true in $\mathrm{E}^{n, n-1}$
- When n is odd, $\alpha\left(\mathcal{A}^{-1}\right)=-\alpha(\mathcal{A})$, so no groups with free groups (rank ≥ 2) act properly.
- Can find counterexamples to "noncompact Auslander" in $E^{2,1}, E^{4,3}, \ldots$.

Margulis space-times

- First examples

Theorem (Margulis)
There exist discrete free groups of $\operatorname{Aff}\left(\mathrm{E}^{2,1}\right)$ that act properly on $E^{2,1}$.

- Next examples
- Free discrete groups in $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle \subset \operatorname{Isom}\left(\mathrm{H}^{2}\right)$.
- Domain bounded by $2 n$ nonintersecting geodesics $\ell_{n}^{ \pm}$such that $A_{i}\left(\ell_{i}^{-}\right)=\ell_{i}^{+}$.

Crooked Planes

- Problem: extend notion of lines in H^{2} to $\mathrm{E}^{2,1}$.
- A Crooked Plane
- Stem is perpendicular to spacelike vector v through vertex p inside the lightcone at p.
- Spine is the line through p and parallel to v
- Wings are half planes tangent to light cones at boundaries of stem, called the hinges.
- A Crooked half-space is one of the
 two regions in $\mathrm{E}^{2,1}$ bounded by a crooked plane.

Crooked domains

Theorem (D)
Given discrete $\Gamma=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}\right\rangle \subset \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)$. If there exist $2 n$ mutually disjoint crooked half spaces $\mathcal{H}_{n}^{ \pm}$such that $\mathcal{A}_{i}\left(\mathcal{H}_{i}^{-}\right)=\mathrm{E}^{2,1} \backslash \mathcal{H}_{i}^{+}$, then Γ is proper.

- Example of a "ping-pong" theorem.
- Finding proper actions
- Start with a free discrete linear group.
- Find disjoint halfspaces whose complement is domain for a linear part.
- Separate half planes, giving rise to proper affine group.

Crooked domains

- Two pair of disjoint halfspaces at the origin.

- Separated

Results

Theorem (D)

Given every free discrete group $G \subset S O(2,1)$ there exists a proper subgroup $\Gamma \subset \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)$ whose underlying linear group is G.

Theorem (Danciger- Guéritaud - Kassel)
For every discrete $\Gamma \subset \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)$ acting properly on $\mathrm{E}^{2,1}$, there exists a crooked fundamental domain for the action.
References

- Lorentzian Geometry, in Geometry \& Topology of Character Varieties, IMS Lecture Note Series 23 (2012), pp. 247280
- (with V. Charette) Complete Lorentz 3-manifolds, Cont. Math. 630, (2015), pp. 4372

