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INTRODUCTION

The limit set of a discrete group of transformations is a key-concept in dynamics as well
as in various other areas of mathematics. There is not one definition of limit set that
is universal and applies in all settings, there are rather several such concepts, defined in
different settings, having various properties and characteristics. In a naive way we can say
when we have an infinite family F of transformations in some space X, limit sets help us
to understand the long term behavior of the family F . Philosophically, the limit set ought
to be a closed subspace of X which is invariant under the given family of transformations,
and it is there where the dynamics concentrates. The action on the complement, which
is an open invariant set, should be “mild” in some sense.

Limit sets spring naturally from various sources. For instance, if X is a topological

space and X
f→ X a continuous function then the iterates of f ,

f1 := f , f2 := f ◦ f1 , fn := f ◦ fn−1 , · · ·

form a semigroup {fn}n∈N and the ω-limit of f is the set of accumulation points of the
orbits {fn(x)}n∈N, x ∈ X. If f is a homeomorphism, so there is a continuous inverse
function f−1, then setting f0 to be the identity, f actually generates a group {fn}n∈Z
where f−n is by definition the nth iterate of the inverse f−1, i.e.

f−1 := f−1 , f−2 = f−1 ◦ f−1 · · ·

Then one also has the concept of the α-limit of f : The set of accumulation points of the
backwards orbits {f−n(x)}n∈N, x ∈ X. These concepts play a key-role in the classical
theory of dynamical systems developed by S. Smale and others.

If X
f→ X is continuous but is not a homeomorphism, then there is not a continuous

inverse f−1, but we can still look at the inverse image of points: f−1(x) are the points
y ∈ X such that f(y) = x. Then we have the backwards orbits {f−n(x)}n∈N, x ∈ X, and
we can look at the set of points where these orbits accumulate. For instance when X is
the Riemann sphere S2 and f is a rational function of degree ≥ 2, the set of accumulation
points of the backwards orbits (of all but some points) form the Julia set, and we all know
that the study of these sets is in itself a rich and fascinating subject.

In these lectures I will study first limit sets of discrete groups of transformations of
the complex projective line CP1, a topic which springs from the classical work of Poincaré
for (classical) Kleinian groups: These are groups generated by Möbius transformations
z �→ az+b

cz+d with a, b, c, d complex numbers such that ad − bc �= 0 (see section 1 below for
more on the subject). The set of all such Möbis transformations forms a Lie group of real
dimension 6, isomorphic to PSL(2,C), the group of holomorphic automorphisms of the
complex projective line CP

1, which is biholomorphic to the Riemann sphere S
2.

A subgroup of PSL(2,C) is said to be discrete if it is discrete as a topological subspace,
i.e., each point in it has a neighborhood that contains no other points in the subgroup.
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Then the limit set of such a group is defined to be the set of accumulation points of the
orbits. This set has very rich dynamics and a fascinating geometry.

The study of limit sets of Kleinian groups, and their relation with the geometry and
topology of Riemann surfaces and hyperbolic 3-manifolds has been for decades, and con-
tinues to be, one of the most active areas of research in mathematics.

The question we shall explore in these lectures is how this concept of limit set general-
izes to higher dimensions, a topic which still is in its childhood though it is starting to be
understood, particularly in dimension two thanks to the work of various people. Explicit
references are given along the text.

These notes are arranged into three sections, one for each lecture.
Section 1 is about the classical theory of Kleinian groups acting on the 1-dimensional

complex projective space. Our aim here is to give a quick introduction to this rich and
fascinating subject, paving the ground for the following sections, and no doubt for several
other lectures during this meeting. We define what the limit set is in this setting, and
we discuss some basic properties of the limit set which serve as guidelines for following
sections, including its relation with the region where the action is properly discontinuous
and equicontinuous, two important concepts that play key roles in the subject.

In Section 2 we look at discrete groups of transformations of complex projective spaces
in higher dimensions and notice that in this setting, the classical definition of the limit
set is not “good enough”. We discuss several interesting families of groups and limit sets,
including the Kulkarni limit set, which in dimension 1 coincides with the usual one and
plays a key role in dimension 2.

In section 3 we focus on complex dimension 2 and describe how in this dimension, the
Kulkarni limit set has remarkable similarities with the classical limit set in dimension 1.
These are summarized in a table at the end of these notes.

The material in these notes is largely due to Angel Cano, Waldemar Barrera, Juan
Pablo Navarrete and Alberto Verjovsky; we refer to the bibliography for more on the
subject. This all shows, I believe, that in complex dimension two the Kulkarni limit set
is “the good concept” of limit set. Yet, when we come into higher dimensions, this is not
so clear. For instance, it is proved in [1] that the limit set for Schottky groups in CP
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introduced in [36] and discussed in Section 2 of these notes, is smaller than and contained
in the Kulkarni Limit set, and it is a closed invariant set such that the action on its
complement is properly discontinuous. That seems related with [24], where the authors
use the Cartan’s decomposition theorem to give a rather subtle and interesting definition
of a limit set which is in some sense “finer” than the Kulkarni limit set.

I am very grateful to my aforementioned colleagues in Mexico: Cano, Barrera, Navar-
rete and Verjovsky, as well as to John Parker, Nikolay Gusevskii, Adolfo Guillot and
Carlos Cabrero, for the fruitful collaboration we have had and for very many useful dis-
cussions that have led to what I will talk about in these lectures. I am also grateful to the
ICTP for allowing us to have this meeting, and to CONACYT (Mexico) for its financial
support through various grants.
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1 INTRODUCTION TO KLEINIAN GROUPS

1.1 Group actions

Let G be a group and M a smooth manifold. An action of G on M means a function:

Φ : G×M −→ M

which preserves the group structure of G. That is, Φ satisfies:
i) If e denotes the identity in G, then Φ(e, x) = x for all x ∈ M .
ii) If · denotes the product in G, then for all x ∈ M and g, h ∈ G we have

Φ(g · h, x) = Φ(g,Φ(h, x)) .

Intuitively, an action means a method for “multiplying” elements of the group G by
points in M , so that the result is a point in M . Notice that in the definition above we
are actually “multiplying ” the elements of G by the points in M by the left, so what we
have is a left action. One has the equivalent notion for right actions. Yet, for the sake of
simplicity, in these notes we will speak just of ”actions”, not specifying in general whether
they are right or left actions.
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We assume in the sequel that G is actually a Lie group. This means that G is itself a
smooth manifold and the group operations in G,

g �→ g−1 and (g, h) �→ g · h ,

are differentiable. We assume further that the map Φ is differentiable. Notice that in
this situation, every subgroup H of G acts on G by multiplication (on the right or on the
left). Also, if G acts on a manifold M , then the restriction of the action to H gives an
H-action on M . Notice that G and M may or may not be compact, neither we are saying
anything about their dimensions: In fact we will be most interested in the case when H
is a Lie subgroup of dimension 0 of some Lie group.

Observe that for each g ∈ G we have a smooth map φg : M → M given by
φg(x) = Φ(g, x). This map has an inverse given by x �→ Φ(g−1, x). Hence each φg is
a diffeomorphism of M . That is, the differentiable group action Φ can be regarded as a
family of diffeomorphisms of M parameterized by G.

Similarly, for each x ∈ M we have a smooth map Ox : G → M defined by g �→ Φ(g, x).
The image G(x) of Ox is called the orbit of x under the action of G:

G(x) = {y ∈ M | y = Φ(g, x) for some g ∈ G} .

Given a G-action Φ on M , for each x ∈ M one has the stabilizer of x, also called the
isotropy subgroup of x, defined by:

Gx = {g ∈ G | Φ(g, x) = x} .

That is, Gx consists of all the elements in G that leave the point x fixed.
An action is called free if all stabilizers are trivial, i.e., if for all x ∈ M and all g ∈ G\e

we have Φ(g, x) �= x.
For simplicity, if a group G acts on M we denote the action of g ∈ G at each point by

g · x.

Examples 1.1 i. Given fixed real numbers λ1,λ2, we may let R act on R
2 by

t · (x1, x2) �→ (eλ1tx1, e
λ1tx2) .

An action of the real numbers R on a manifold M is called a flow or also a one
parameter group of diffeomorphisms of M .

ii. Let O(2) be the orthogonal group generated by reflections on all lines through the
origin in R

2, and let Aff(2,R) be the group generated by reflections on all lines in
R

2. These groups act on R
2 in the obvious way. Now, given integers p, q, r ≥ 2 such

that
1

p
+

1

q
+

1

r
= 1 ,
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let T := Tp,q,r be a triangle in R
2 with inner angles π

p + π
q + π

r , [We leave as an
exercise to show that the only possible triples are, up to permutation, the triples
(2, 3, 6), (2, 4, 4) and (3, 3, 3)] and let Σp,q,r be the subgroup of Aff(2,R) generated
by the reflections on the edges of T . Then Σp,q,r acts on R

2 in such a way that the
various (infinitely many) copies of T cover the plane.

Notice that if �1 and �2 are the lines determined by two edges of T that determine,
say, the angle π/p, then the reflection on �1 followed by the reflection on ell2 is a
rotation by an angle 2 π/p around the point where these two lines meet.

Figure 1: Reflection on a line through the origin.

Hence the isotropy of this point, which is a vertex of T , is a cyclic group of order
2p.

iii. Let O(n) be, more generally, the group of linear maps of Rn generated by the reflec-
tions on hyperplanes through the origin, and let SO(n) be the index two subgroup of
O(n) consisting of elements that can be expressed by an even number of reflections.
This is the group of rotations of Rn. Both of these groups preserve the usual metric
in R

n, so they leave invariant each sphere centred at the origin, and we may think of
each of them as acting on the unit sphere. It is clear that the origin in R

n is a fixed
point for the corresponding actions, that is g · 0 = 0 for all g ∈ O(n). We leave it as
an exercise to show that all other points have isotropy O(n− 1) (and SO(n− 1)).

iv. Let f be a diffeomorphism of a manifold M . For instance, let M be the 2-sphere S2

and identify it with the extended plane �R2 := R
2 ∪∞ by stereographic projection,

so that the origin (0, 0) corresponds to the South pole S while ∞ corresponds to
the North pole. And let f be the map in �R2 defined by (x, y) �→ (12x, 2y). Now
iterate this function. That is, look at the family of maps f1 := f , f2 = f ◦ f1,
f3 = f ◦ f2 and so on. Define also f0 := Id and set f−1 := f−1; we may thus iterate
f also backwards and get a family of maps {fn}n∈Z. Then the assignment n �→ fn
determines an action of the integers Z in S

2.
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Notice that in this case we have two points which are fixed by the action, the poles S
and N . The points in the axes converge to S and N (either when travelling forwards
or backwards), while all other points converge to N .

Observe that in this example we can replace f by any other diffeomorphism and
get an action of Z on S

2. This will be relevant in the sequel. Notice too that if we
replace f by some other function which is not a diffeomorphism, then we do not
have an inverse f−1. In this case we do not have an action of Z. Yet, we can iterate
f forwards and look at the forwards orbits of points. And we can also look at the
inverse images of points, and get the backwards orbit.

1.2 Inversions and the Möbius group

General references for this and the following sections in this chapter are Beardon’s book
[4] and the excellent notes of M. Kapovich [25].

Let us consider now another type of transformations, which are analogous to re-
flections, the inversions. Given a circle C = C(a, r) in the plane R

2 with centre at a
point a ∈ R

2 and radius r, the inversion in C is the map ι = ι(a, r) of the 2-sphere
S
2 ∼= �R2 := R

2 ∪∞ defined for each z = (x, y) �= a,∞ by:

ιa,r(x, y) = (a1, a2) +
r2

|(x, y)− (a1, a2)|2
�
x− a1, y − a2

�
;

define ι(a) = ∞ and ι(∞) = a. Notice that given the circle C, say with centre 0 and

radius r > 0, the inversion in C carries a point P to unique point in the ray
−−→
0, P such

that |P | |P �| = r2. This definition obviously extends to (n− 1)-spheres in S
n ∼= R

n ∪∞.

Figure 2: Inversion on a circle in the plane

We remark that for circles of maximal length (i.e., radius 1 in the 2-sphere) this map
is just a reflection in the corresponding line in R

2.
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It is an exercise to show that inversions are conformal maps, i.e., they preserve angles.
That is, if two curves in S

2 meet with an angle θ, then their images under an inversion
also meet with an angle θ. Moreover, one has that if C1 , C2 are circles in S

2 and ι1
is the inversion with respect to C1, then ι1(C2) = C2 if and only if C1 and C2 meet
orthogonally. We leave the prove as an exercise (Show first that two circles C1, C2 in S

2

meet orthogonally at the points P1 y P2 if and only if the centre z2 of C2 is the meeting
point of the lines L∞ and L�

∞, which are tangent to C1 at P1 and P2, and conversely, the
centre z1 of C1 is the meeting point of the lines L∈ and L�

∈, tangent to C2 at these points.)

c

Figure 3: A collar of circles having C as a common orthogonal circle.

In fact the same statement holds in all dimensions (with essentially the same proof):

Theorem 1.2 Let Cn−1
1 , Cn−1

2 be spheres of dimension n− 1 in S
n and ι1 the inversion

with respect to C1. Then ι1(C2) = C2 if and only if C1 and C2 meet orthogonally.

We now let Möb(Sn) be the group of diffeomorphisms of Sn ∼= �R = R
n∪{∞} generated

by inversions on all (n− 1)-spheres in S
n, and let Möb(Bn) be the subgroup of Möb(Sn)

consisting of maps that preserve the unit ball Bn in R
n.

Notice that if the (n−1)-sphere S1 meets Sn−1 = ∂Bn orthogonally then C := S1∩Sn−1

is an (n− 2)-sphere in S
n−1 and the restriction to S

n−1 of the inversion ιS1 coincides with
the inversion on S

n−1 defined by the (n− 2)-sphere C. In other words one has a canonical
group homomorphism Möb(Bn) → Möb(Sn−1).

Conversely, given an (n− 2)-sphere C in S
n−1 there is a unique (n− 1)-sphere S in S

n

that meets Sn−1 orthogonally at C. The inversion

ιC : Sn−1 → S
n−1
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extends canonically to the inversion:

ιS : Bn → B
n ,

thus giving a canonical group homomorphism Möb(Sn−1) → Möb(Bn), which is obviously
the inverse morphism of the previous one. Thus one has:

Theorem 1.3 There is a canonical group isomorphism Möb(Bn) ∼= Möb(Sn−1) .

Definition 1.4 We call Möb(Bn) (and also Möb(Sn)) the general Möbius group of the
ball (or of the sphere).

The subgroup Möb+(Bn) of Möb(Bn) of words of even length consists of the elements
in Möb(Bn) that preserve the orientation. This is an index two subgroup of Möb(Bn).
Similar considerations apply to Möb(Sn). We call Möb+(Bn) and Möb+(Sn)Möbius groups
(of the ball and of the sphere, respectively).

It is easy to see that Möb(Sn) includes:

• Euclidean translations: t(x) = x+a, where a ∈ R
n. These are obtained by reflections

on parallel hyperplanes.

• Rotations: t(x) = Ox, where O ∈ SO(n) ; obtained by reflections on hyperplanes
through the origin.

• Homotecies, obtained by inversions on spheres with same centre and different radius.

In fact one has:

Theorem 1.5 The group Möb(Sn) of Möbius transformations is generated by the previ-
ous transformations: Translations, rotations and homotecies, together with the inversion:
t(x) = x/�x�2.

It is clear that the rotations are actually contained in Möb+(Bn), since hyperplanes
through the origin meet transversally the unit sphere in Rn. In fact one has that Möb+(Bn)
contains the orthogonal group SO(n) as the stabilizer (or isotropy) subgroup at the origin
0 of its action on the open ball Bn. The stabilizer of 0 under the action of the full
group Möb(Bn) is O(n). This implies that Möb+(Bn) acts transitively on the space of
lines through the origin in B

n. Moreover, Möb+(Bn) clearly acts also transitively on the
intersection with B

n of each ray through the origin. Thus it follows that Möb+(Bn) acts
transitively on B

n. In other words we have:

Theorem 1.6 The group Möb+(Bn) acts transitively on the unit open ball Bn with isotropy
SO(n). Furthermore, this action extends to the boundary Sn−1 = ∂Bn and defines a canon-
ical isomorphism between this group and the Möbius group Möb+(Sn−1).
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We remark that for n > 2, Möb+(Sn−1) is the group of (orientation preserving) con-
formal automorphisms of the sphere (see for instance Apanasov’s book). That is, we
have:

Theorem 1.7 For all n > 2 we have group isomorphisms

Möb+(B
n) ∼= Möb+(S

n−1) ∼= Conf+(S
n−1) .

In fact the previous constructions show that every element in Möb+(Bn) extends canon-
ically to a conformal automorphism of the sphere at infinity S

n−1
∞ := H

n
R
\ H

n
R
and con-

versely, every conformal automorphism of Sn−1
∞ extends to an element in Möb+(Bn).

1.3 Hyperbolic space

We now use Theorem 1.6 to construct a model for hyperbolic n-space H
n
R
. This is

Poincare’s ball model for hyperbolic space.
We recall that a Riemannian metric g on a smooth manifold M means a choice of a

positive definite quadratic form on each tangent space TxM , varying smoothly over the
points in M . Such a metric determines lengths of curves as usual, and so defines a metric
on M in the usual way, by declaring the distance between two points to be the infimum
of the lengths of curves connecting them.

Now consider the open unit ball Bn, its tangent space T0B
n at the origin, and fix the

usual Riemannian metric on it, which is invariant under the action of O(n). Given a point
x ∈ B

n, consider an element γ ∈ Möb(Bn) with γ(0) = x. Let Dγ0 denote the derivative
at 0 of the automorphism γ : Bn → B

n. This defines an isomorphism of vector spaces
Dγ0 : T0B

n → TxB
n and allows us to define a Riemannian metric on TxB

n. In this way
we get a Riemannian metric at each tangent space of Bn.

We claim that the above construction of a metric on the open ball is well defined,
i.e., that the metric one gets on TxB

n does not depend on the choice of the element
γ ∈ Möb(Bn) taking 0 into x. In fact, if η ∈ Möb(Bn) is another element taking 0 into x,
then η−1 ◦ γ leaves 0 invariant and is therefore an element in O(n). Since the orthogonal
group O(n) preserves the metric at T0B

n, it follows that both maps, γ and η, induce the
same metric on TxB

n. Hence this construction yields to a well-defined Riemannian metric
on B

n.
It is easy to see that this metric is complete and homogeneous with respect to points,

directions and 2-planes, so it has constant (negative) sectional curvature.

Definition 1.8 The open unit ball Bn ⊂ R
n equipped with the above metric serves as

a model for the hyperbolic n-space H
n
R
. The group Möb(Bn) is its group of isometries,

also denoted Iso(Hn
R
), and its index two subgroup Möb+(Bn) is the group of orientation

preserving isometries of Hn
R
, Iso+(Hn

R
).
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In the sequel we denote the real hyperbolic space by H
n
R
, to distinguish it from the

complex hyperbolic space H
n
C
(of real dimension 2n) that we will consider later. Also,

we denote by S
n−1
∞ the sphere at infinity, that is, the boundary of Hn

R
in S

n. We set
H

n
R
:= H

n
R
∪ S

n−1
∞ .

Given that we have a metric in H
n
R
, we can speak of length of curves, area, volume,

and so on. We also have the concept of geodesics: curves that minimize (locally) the
distance between points. These are the segments of curves in H

n
R
which are contained in

circles that meet the boundary S
n−1
∞ orthogonally.

Notice that the constructions above show that every isometry of Iso(Hn
R
) extends

canonically to a conformal automorphism of the sphere at infinity S
n−1
∞ and conversely,

every conformal automorphism of Sn−1
∞ extends to an isometry of Hn

R
.

Remark 1.9 (Models for real hyperbolic geometry) We remark that the model of
hyperbolic space just described is particularly nice and useful in many ways. Yet, there are
other models for hyperbolic space, each having its own interesting properties. There are
several other classical models for real hyperbolic geometry: the projective ball model, the
hyperboloid model, the upper-half sphere model and the Siegel domain model. The upper-
half sphere model serves, among other things, to pass geometrically from the disc model
to the upper-half space model and back. We refer to Thurston’s book for descriptions of
several other models for the hyperbolic n-space. These are briefly discussed below.

The hyperboloid model, also called Lorentz or Minkowski model, is very much related
to the models we use in the sequel to study complex hyperbolic geometry (and so are
the projective ball and the Siegel domain models that we describe below). For this we
look at the upper hyperboloid P of the two-sheeted hyperboloid defined by the quadratic
function

x2
1 + · · ·+ x2

n − x2
n+1 = −1 .

Its group of isometries is now O(n, 1)o, the subgroup of the Lorentz group O(n, 1) consist-
ing of transformations that preserve P . This model is generally credited to Poincaré too,
though it seems that K. Weierstrass (and probably others) used it before. Its geodesics
are the intersections of P with linear 2-planes in R

n+1 passing through the origin; every
linear space passing through the origin meets P in a totally geodesic subspace.

The projective ball model is also called the Klein, or Beltrami-Klein, model. For this
we look at the disc D in R

n+1 defined by

D := {(x1, · · · , xn+1)
�� x2

1 + · · ·+ x2
n < 1 and xn+1 = 1 } .

That is, we look at the points in R
n+1 where the quadratic form Q(x) = x2

1+· · ·+x2
n−x2

n+1

is negative and xn+1 = 1. Notice that stereographic projection from the origin determines
a bijection between D and P .

Finally, the Siegel domain (or paraboloid) model for Hn
R
is obtained by looking at the

points (x1, · · · , xn) in R
n that satisfy 2xn > x2

1 + · · · + x2
n−1. This is bounded by a
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paraboloid, and it is equivalent to the upper half-space model. The Cayley transform
provides an equivalence between this domain and the unit ball in R

n.

1.4 Properly discontinuous actions

We assume for the moment that G is a group acting on a smooth manifold M by diffeo-
morphisms. Recall that the stabiliser of a point x ∈ M , also called the isotropy, is the
subgroup Gx ⊂ G defined by

Gx = {g ∈ G | g(x) = x} ;

The orbit of x under the action of G is the set:

Gx = {y ∈ M | y = g(x) for some g ∈ G} .

Definition 1.10 The action of G is discontinuous at x ∈ M if there is a neighbourhood
U of x such that the set

{g ∈ G | gU ∩ U �= ∅}

is finite. The set of points in M at which G acts discontinuously is called the region
of discontinuity. This set is also called the regular set of the action. The action is
discontinuous on M if it is discontinuous at every point in M .

One has the following well-known result.

Proposition 1.11 If the G-action on M is discontinuous, then the G-orbits have no
accumulation points in M . That is, if (gm) is a sequence of distinct elements of G and
x ∈ M , then the sequence (gm(x)) has no limit points. Conversely, if G satisfies this
condition, then G acts discontinuously on M .

Definition 1.12 Let G act on the manifold M by diffeomorphisms. The action is said
to be properly discontinuous if for each non empty compact set K ⊂ M the set

{g ∈ G | gK ∩K �= ∅} ,

is finite.

It is clear that every properly discontinuous action is a fortiori discontinuous. The
example below shows that the converse statement is false generally speaking.

The following example shows that discontinuous actions are not necessarily properly
discontinuous:
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Example 1.13 Let G be the cyclic group induced by the transformation g : C2 → C
2

given by g(z, w) = (12z, 2w). Clearly G acts discontinuously on C
2 \ {0}, but if we let S

be the set
S = {(z, w) ∈ C

2
�� |z| = |w| = 1} ,

then the set of cluster points of its orbit is {(z, w) ∈ C
2 | z = 0} ∪ {(z, w) ∈ C

2|w = 0},
the union of the two coordinate axis.

The following propositions provide equivalent ways of defining properly discontinuous
actions:

Proposition 1.14 The group G acts properly discontinuously on M if and only if for
every pair of compact subsets K1, K2 of M , there are only a finite number of elements
g ∈ G such that g(K1) ∩K2 �= ∅.

Proposition 1.15 Let G act properly discontinuously on M . Then the orbits of the ac-
tion on compact sets have no accumulation points. That is, if (gm) is a sequence of distinct
elements of G and K ⊂ M is a nonempty compact set, then the sequence (gm(K)) has no
limit points. Conversely, if G satisfies this condition, then G acts properly discontinuously
on M .

It is clear that the second proposition implies the previous one. We refer to [27] for
the proof of 1.15.

Notice that if G acts discontinuously and freely on a manifold M , then the quotient
map π : M → M/G is a covering map and the group of automorphisms of the covering
is G itself, Aut(M → M/G) = G. Yet, the example above shows that the quotient M/G
may not be a Hausdorff space, even if the action is free and discontinuous. We notice that
in this same example, the axis are the set of accumulation points of the orbits of compact
sets in C

2 \ {(0, 0)}. If we remove the axis, we get a a properly discontinuous action on
their complement, and in that case the quotient is indeed Hausdorff. This is a general
fact for properly discontinuous actions (see [27], [29]).

There is another related notion that will play a key-role in the sequel, so we introduce
it now:

Definition 1.16 Let G be a group acting on a manifold X. The equicontinuity region of
G, denoted Eq(G), is the set of points x ∈ X for which there is an open neighbourhood
U of x such that G |U is a normal family.

If we equip the manifoldX with a Riemannian metric, the above definition is equivalent
to saying that the family of transformations defined by G is equicontinuous at a point
x0 ∈ X if for every � > 0, there exists a δ > 0 such that d(g(x0), g(x)) < � for all g ∈ G



14 1 INTRODUCTION TO KLEINIAN GROUPS

and all x such that d(x0, x) < δ. The family is equicontinuous if it is equicontinuous at
each point of X.

Recall that a collection of transformations is a normal family if and only if every
sequence of distinct elements has a subsequence which converges uniformly on compact
sets.

1.5 Kleinian groups: The limit set

We now consider a subgroup Γ ⊂ Iso(Hn
R
) and look at its action on the hyperbolic space

H
n
R
. We want to study how the orbits of points in H

n
R
(and in H

n
R
) behave under the

action of Γ.

Definition 1.17 Let Γ ⊂ Iso(Hn
R
) be a discrete subgroup. The limit set of Γ is the subset

Λ = Λ(Γ) of Sn−1
∞ of points which are accumulation points of orbits in H

n
R
. That is,

Λ :=
�
y ∈ S

n−1
∞ | y = lim{gm(x)} for some x ∈ H

n
R
and {gm} a sequence in Iso(Hn

R
)
�
.

By definition this is a closed invariant subset of Sn−1
∞ which is non-empty, unless Γ is

finite. This is the set where the dynamics concentrates.

Definition 1.18 A discrete subgroup of Iso(Hn+1
R

) ∼= Conf(Sn) is Kleinian if its limit set
is not the whole sphere at infinity.

We remark that nowadays the term “Kleinian group” is being often used for an arbi-
trary discrete subgroup of hyperbolic motions, regardless of whether or not the region of
discontinuity is empty.

Example 1.19 Consider an arbitrary family of pairwise disjoint closed 2-discs D1, ..., Dr

in the 2-sphere with boundaries the circles C1, ..., Cr. Let ι1, ..., ιr be the inversions on
these r circles, and let Γ be the subgroup of Iso(H3

R
) ∼= Möb(B3) ∼= Conf(S2) generated by

these maps. Then G has nonempty region of discontinuity that contains the complement
in S

2 of the union D1 ∪ ... ∪ Dr (which is a fundamental domain for Γ). One can show
that in this case the limit set is a Cantor set. This is an example of a Schottky group, and
Schottky groups are all Kleinian groups.

Continuing with this example, move the discs D1, ..., Dr so that each of them touches
tangentially exactly its two neighbors, and there is a common circle C orthogonal to all
of them. Then C is the limit set of the corresponding group of inversions.

Now move the circles slightly C1, ..., Cr, breaking the condition that they have a com-
mon orthogonal circle, keeping the condition that each disc touches with its two neighbors.
Then one has (this is not at all obvious) that the limit set becomes a fractal curve of Haus-
dorff dimension between 1 and 2, and choosing appropriate deformations one can cover
the whole range of Hausdorff dimension between 1 and 2. This is depicted in figure 1.19
below, and this is an example of a more general result by Rufus Bowen.
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Figure 4: A “kissing Schottky” group with C as limit set.

These are all examples of Kleinian groups. So we see that whenever we have a Kleinian
group, the sphere Sn−1

∞ splits in two sets, which are invariant under the group action: The
limit set Λ, where the dynamics concentrates, and the region of discontinuity Ω where the
dynamics is “mild” and plays an important role in geometry, as we will see later.

1.6 Some basic properties of the limit set.

We consider again a subgroup G of Iso(Hn+1
R

) and we think of it as acting on H
n+1
R

:=
H

n+1
R

∪ S
n
∞. In this section we discuss some basic properties of the limit set of Kleinian

groups.
Recall one has that the region of discontinuity of G is the set Ω = Ω(G) of all points in

H
n+1
R

which have a neighbourhood that intersects only finitely many copies of its G-orbit.
The following property of the limit set follows easily from the fact that a Kleinian

group acts by isometries on the hyperbolic space, so it cannot have accumulation points

of the orbits within H
n+1
R

. Yet, H
n+1
R

is compact, so when considering the action on this
space, there must me accumulation points.
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Figure 5: Deformation of a Fuchsian group: The limit set is a quasi-circle

Proposition 1.20 Think of hyperbolic space H
n+1
R

as being the unit (n+1)-ball equipped
with the hyperbolic metric; its boundary is Sn. Let (γm) be a sequence of distinct elements
of a discrete group G ⊂ Iso(Hn+1

R
). Then the set of accumulation points of the orbits

(γm)(x) is contained in S
n.

Proof: Let us assume that the lemma is false and there is a subsequence of (γm), still
denoted (γm), and y ∈ H

n+1
R

such that γm(∞) n→∞
�� y.

We can equip H
n+1
− = {x ∈ R

n+1 | |x| > 1}∪ {∞} with a metric of constant curvature
−1 for which the group of preserving orientation isometries is given by Möb(Hn+1

R
); denote

such metric by d. Now let z ∈ H
n+1
− , then

d(γm(z), y) ≤ d(γm(z), γm(∞)) + d(y, γm(∞)) = d(z, x) + d(y, γm(x)) .

Thus the set {γm(z) : m ∈ N} is relatively compact. Since (γm) ⊂ Iso(Hn+1
− ) the Arzelà-

Ascoli theorem yields that there is a subsequence of (γm), still denoted by (γm), and
γ : Hn+1

− → H
n+1
− such that γm n→∞

�� γ in the compact-open topology. Clearly γ is an
isometry and therefore G is nondiscrete. Which is a contradiction. ✷

The following convergence property of Kleinian groups is fundamental, as from it spring
several of the most basic properties of this theory. The same property holds in complex and
quaternionic hyperbolic geometry and that is why the concept of limit set on those settings
shares most of the properties one has in real hyperbolic geometry. This convergence
property fails in general for arbitrary discrete subgroups of PSL(n,C), n > 2, making
that theory much more “intriguing” in some sense.
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Lemma 1.21 (Convergence Property) Let (γm) be a sequence of distinct elements of
a discrete group G ⊂ Möb(Sn). Then either it contains a convergent subsequence, or it
converges to a constant map away from a point in S

n. That is, there exist a subsequence,
still denoted (γm), and points x, y ∈ S

n such that:

i. γm converges uniformly to the constant function y on compact sets of Sn − {x}.

ii. γ−1
m converges uniformly to the constant function x on compact sets of Sn − {y}.

The proof of the convergence property is based on the existence and basic properties of
isometric spheres (see for instance [15] for more details, or [25, 26] for a thorough account
on the subject).

Theorem 1.22 Let G be a subgroup of Iso(Hn+1
R

). The following three conditions are
equivalent:

i. The subgroup G ⊂ Iso(Hn+1
R

) is discrete.

ii. The region of discontinuity of G in H
n+1
R

is all of Hn+1
R

.

iii. The region of discontinuity of G in H
n+1
R

is nonempty.

Proof: It is clear that (ii) =⇒ (iii) =⇒ (i). Let us prove that (i) implies (ii). Let
K be a compact set and assume that K(G) = {γ ∈ G : γK ∩K �= ∅} is countable. Then
by Lemma 1.21 there is a sequence (γm) ⊂ K(G) and points x, y ∈ ∂Hn+1

R
such that γm

converges uniformly to y on compact sets of H
n+1
R

− {x}. Let U be a neighbourhood of y
disjoint from K. Then there is a natural number no such that γm(K) ⊂ U for m > no.
In particular we deduce γm(K)∩K = ∅ for all m > n0, which is a contradiction, and the
result follows. ✷

Notice that by continuity, it is clear that if the region of discontinuity of G in S
n is

nonempty, then the region of discontinuity of G in H
n+1
R

is nonempty and therefore G is
discrete.

One has:

Theorem 1.23 Let G be as above. Then the limit set is contained in the sphere at infinity
S
n
∞ = ∂Hn+1

R
and it is independent of the choice of orbit.

Proof: Let x, y ∈ H
n+1
R

and p a cluster point of Gy. Then there exists a sequence
(gm) ⊂ G such that gm(y) converges to p. By Lemma 1.21 it follows that q also is a cluster
point of (gm(x)), which ends the proof. ✷

Theorem 1.24 Let G be a discrete subgroup of Iso(Hn+1
R

). The limit set of G is the
complement of the region of discontinuity in S

n
∞.
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Proof: First we show that Λ lies in the complement of the region of discontinuity.
Let y ∈ Λ(G), then there is a point p ∈ H

n+1
R

and a sequence (γm) such that γm(p) → x.
From Lemma 1.21 we conclude that there exists x ∈ ∂Hn+1

R
such that we can assume that

γm converges uniformly to the constant y on compact sets of H
n+1
R

− {x}. Let U be any
neighbourhood of y. Then there is a natural number m0 for which γm(y) ∈ U for m ≥ m0.

Now let q ∈ ∂Hn+1
R

be a point in the discontinuity region, and assume that q ∈ Λ(G).
By the previous argument we deduce that q does not belong to the discontinuity region,
which is a contradiction. Hence the discontinuity region is contained in the complement of
Λ(G). In others words, the complement of the discontinuity region is contained in Λ(G).

✷

It is clear from its definition that the limit set Λ(G) is a closed G-invariant set, and it is
empty if and only if G is finite (since every sequence in a compact set contains convergent
subsequences).

Definition 1.25 Let G be a group acting on a manifold X. The equicontinuity region of
G, denoted Eq(G), is the set of points z ∈ X for which there is an open neighbourhood
U of z such that G |U is a normal family.

Recall that a collection of transformations is a normal family if and only if every
sequence of distinct elements has a subsequence which converges uniformly on compact
sets.

One has:

Theorem 1.26 Let G be a discrete subgroup of Iso(Hn+1
R

). Then the equicontinuity region
of G coincides with the discontinuity region S

n \ Λ(G).

Proof: Observe that by Lemma 1.21, it is enough to show that Eq(G) ⊂ Ω(G). Let
x ∈ Eq(G) and assume that x ∈ Λ(G), thus by Lemma 1.21 there is a sequence (γm)
and a point y such that γm converges uniformly to the constant function y on compact

sets of H
n+1
R

− {x}. Since x ∈ Eq(G), it follows that γm converges uniformly to the

constant function y on H
n+1
R

. Let q ∈ H
n+1
R

and U be a neighbourhood of y such that
U ∩H

n+1
R

⊂ H
n+1
R

− {q}. The uniform convergence implies that there is a natural number

n0 such that γm(H
n+1
R

) ⊂ U∩H
n+1
R

⊂ H
n+1
R

−{q} for each m > m0. This is a contradiction
since each γm is a homeomorphism. ✷

We have:

Theorem 1.27 Let G be discrete group such that its limit set has more than two points,
then it has infinitely many points.
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Proof: Assume that Λ(G) is finite with at least 3 points. Thus �G =
�

x∈Λ(G) Isot(x,G)

is a normal subgroup of G with finite index. Moreover, since each element in Iso(Hn+1
R

)
has at most 2 fixed points in ∂Hn+1

C
we conclude that G̃ is trivial and therefore G is finite,

which is a contradiction. ✷

Definition 1.28 The group G is elementary if its limit set has at most two points.

Theorem 1.29 If G is not an elementary group, then its action on the limit set is min-
imal. That is, the closure of every orbit in Λ(G) is all of Λ(G).

Proof: Let x, y ∈ Λ(G), then there is a sequence (gm) ⊂ G and a point p ∈ H
n+1
R

such
that gm(p) converges to y. By Lemma 1.21 there is a point q ∈ ∂Hn+1

R
, such that we can

assume that gm converges uniformly to y on compact sets of H
n+1
R

. Now, it is well known
(see [4]) that there is a transformation g ∈ G such that g(x) �= x. thus we can assume
that x �= q and therefore we conclude that gm(x) converges to y.

✷

Corollary 1.30 If G is a nonelementary Kleinian group, then Λ(G) is a nowhere dense
perfect set.

In other words, if G is nonelementary then Λ(G) has empty interior and every orbit
in the limit set is dense in Λ(G).

Remark 1.31 It is noticed in [35] that if the limit set of a nonelementary conformal
group acting on S

n is a compact smooth k-manifold N , for some 0 < k ≤ n, then N is a
round sphere Sk. The proof, by Livio Flaminio, is a direct consequence, via stereographic
projection of Sn into the tangent plane of Sn at a hyperbolic fixed point of the group,
of the following fact: if M is a closed k-submanifold of Rn which is invariant under a
homothetic transformation, then M is a k-dimensional subspace of Rn.
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2 COMPLEX KLEINIAN GROUPS

In the previous section we studied classical Kleinian groups; these are discrete subgroups
of isometries of real hyperbolic spaces H

n
R
. We remark that when n = 3, the sphere at

infinity is 2-dimensional and we can think of it as being the Riemann sphere S
2, which is

a complex 1-dimensional manifold, diffeomorphic to the projective line CP
1. Moreover,

in this case one has that every (orientation preserving) element in the conformal group
Conf+(S2) is actually a Möbius transformation:

z �→ az + b

cz + d
,

where a, b, c, d are complex numbers such that ad−bz = 1. The set of all such maps forms
a group, which is isomorphic to the group PSL(2,C) of projective automorphisms of CP1:

PSL(2,C) := SL(2,C)/± Id ,

where SL(2,C) is the group of 2× 2 matrices with complex coefficients and determinant
1, and Id is the identity matrix. Hence, considering discrete subgroups of Iso+(H3

R
) is the

same thing as considering discrete subgroups of PSL(2,C).
We now look at discrete subgroups of PSL(n + 1,C), the group of automorphisms of

the complex projective space CP
n, and study complex Kleinian groups. This means a

discrete subgroup of PSL(n+ 1,C) that acts on the complex projective space CPn with a
nonempty region of discontinuity.

2.1 Complex projective space

We recall that the complex projective space CP
n is defined as:

CP
n = (Cn+1 − {0})/ ∼ ,

where ”∼” denotes the equivalence relation given by x ∼ y if and only if x = αy for some
nonzero complex scalar α. In short, CPn is the space of complex lines through the origin
in C

n+1.
Consider for instance CP

1. Every point here represents a complex line through the
origin in C

2. Recall that a complex line � through the origin is always determined by a
unit vector in it, say v, together with all its complex multiples. In other words, a unit
vector v in C

2 determines the complex line

� = {λ · v |λ ∈ C} .

Notice that the unit vectors in C
2 form the 3-sphere S3, just as the unit vectors in C form

the circle
S
1 = {z ∈ C | z = eiθ , θ ∈ [0, 2π]} .
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Notice that the circle S1 acts on C
2 in the obvious way: eiθ · (z1, z2) �→ (eiθz1, eiθz2)). This

action preserves distances in C
2, so given a point v ∈ S

3 ⊂ C
2, its orbit under this S

1-
action is the set {(eiθ ·v}, which is a circle in S

3 contained in the complex line determined
by v. That is the intersection of S3 with every complex line through the origin in C

2 is a
circle, and one has:

CP
1 ∼= S

3/S1 ∼= S
2 .

The projection S
3 → CP

1 ∼= S
2 is known as the Hopf fibration.

More generally, CPn is a compact, connected, complex n-dimensional manifold, dif-
feomorphic to the orbit space S

2n+1/U(1), where U(1) ∼= S
1 is acting coordinate-wise on

the unit sphere in C
n+1. In fact, we usually represent the points in CP

n by homogeneous
coordinates (z1 : z2 : · · · : zn+1). This means that we are thinking of a point in CP

n as
being the equivalence class of the point (z1, z2 : · · · , zn+1) up to multiplication by non-zero
complex numbers. Hence if, for instance, we look at points where the first coordinate z1
is not zero, then the point (z1 : z2 : · · · : zn+1) is the same as (1 : z2

z1
: · · · : zn+1

z1
). Notice

this is just a copy of Cn. That is, every point in CP
n that can be represented by a point

(z1 : z2 : · · · : zn+1) with z1 �= 0, has a neighbourhood diffeomorphic to C
n, consisting of

all points with homogeneous coordinates (1 : w2 : · · · : wn+1). Of course similar remarks
apply for points where z2 �= 0 and so on. This provides the classical way for constructing
an atlas for CPn with (n+ 1) coordinate charts.

Notice one has a projection S
2n+1 → CP

n, a Hopf fibration, and the usual Riemannian
metric on S

2n+1 is invariant under the action of U(1). Therefore this metric descends to
a Riemannian metric on CP

n, which is known as the Fubini-Study metric.

It is clear that every linear automorphism of Cn+1 defines a holomorphic automorphism
of CPn, and it is well-known that every automorphism of CPn arises in this way. Thus
one has that the group of projective automorphisms is:

PSL(n + 1,C) := GL(n + 1,C)/(C∗)n+1 ∼= SL(n + 1,C)/Zn+1 ,

where (C∗)n+1 is being regarded as the subgroup of diagonal matrices with a single nonzero
eigenvalue, and we consider the action of Zn+1 (viewed as the roots of the unity) on
SL(n + 1,C) given by the usual scalar multiplication. Then PSL(n + 1,C) is a Lie group
whose elements are called projective transformations.

There is a classical way of decomposing the projective space that paves the way for
studying complex hyperbolic geometry. For this we think of Cn+1 as being a union N− ∪
N0 ∪ N+, where each of these sets consists of the points (z0, · · · , zn) ∈ C

n+1 satisfying
that |z0|2 is, respectively, larger, equal or smaller than |z1|2 + · · · + |zn|2. It is clear that
each of these sets is a complex cone, that is, union of complex lines through the origin in
C

n+1, with (deleted) vertex at 0.
Obviously

S := {(z0, · · · , zn) ∈ N0 | z0 = 1 } ,



22 2 COMPLEX KLEINIAN GROUPS

is a sphere of dimension (2n− 1), and N0 is the union of all complex lines in C
n+1 joining

the origin 0 ∈ C
n+1 with a point in S; each such line meets S in a single point. Hence

the projectivisation [S] = (N0 \ {0})/C∗ of N0 is a (2n − 1)-sphere in CP
n that splits

this space in two sets, which are the projectivisations of N− and N+. The set N0 is often
called the cone of light.

Similarly, notice that the projectivisation ofN− is an open (2n)-ball B in CP
n, bounded

by the sphere [S]. This ball serves as model for complex hyperbolic geometry, as we will
see in the following section, where we describe its full group of holomorphic isometries,
which is naturally a subgroup of projective transformations. This gives a natural source
of discrete subgroups of PSL(n + 1,C), those coming from complex hyperbolic geometry.

Notice that the above decomposition of the projective space is being done according
to the positive, negative and null sets of a quadratic form of signature −1. Of course
there are similar decompositions corresponding to quadratic forms of different signatures:
We shall discuss this below, when we speak about complex Lorentzian groups.

2.2 Complex Kleinian groups

Our aim in these lectures is to study discrete groups G of PSL(n+1,C) which act on CP
n

with non-empty region of discontinuity. Recall from the previous section that the action
of G is discontinuous at x ∈ CP

n if there is a neighbourhood U of x such that the set

{g ∈ G | gU ∩ U �= ∅}

is finite. The set of points in CP
n at which G acts discontinuously is called the region of

discontinuity.

Definition 2.1 A discrete subgroup Γ of PSL(n + 1,C) is complex Kleinian if its region
of discontinuity in CP

n is non-empty.

This is a concept introduced by Alberto Verjovsky and José Seade some years ago (see
SV1,SV2,SV3), which puts together several important areas of current research, as we
shall see (we refer to [15] for more on the topic). For n = 1, CP1 is the Riemann sphere,
PSL(2,C) can be regarded as being the group of (orientation preserving) isometries of the
hyperbolic space H3

R
and we are in the situation envisaged previously, of classical Kleinian

groups.
Notice that in this classical case, there is a particularly interesting class of Kleinian

subgroups of PSL(2,C): Those which are conjugate to a subgroup of PSL(2,R). This
latter group can be regarded as the group of Möbius transformations with real coefficients:

z �→ az + b

cz + d
, ad− bc = 1 , a, b, c, d ∈ R .
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These are the Möbius transformations that preserve the upper half plane in C. And if
we identify the Riemann sphere with the extended plane C ∪ ∞, via stereographic pro-
jection, these are the conformal automorphisms of the sphere that preserve the Southern
hemisphere, i.e., they leave invariant a 2-ball in S

2. Equivalently, these are subgroups
of IsoH3

R
which actually are groups of isometries of the hyperbolic plane H

2
R
. These are

called Fuchsian groups. In higher dimensions, this role is played by the so-called complex
hyperbolic groups. These are, by definition, subgroups of PSL(n+1,R) which act on CP

n

leaving invariant a certain open ball of complex dimension n, which serves as model for
complex hyperbolic geometry. In the subsection below we speak a few words about this
interesting subject. And in the following subsections we discuss various other types of
Complex Kleinian Groups.

2.3 The Kulkarni limit set

We start our discussion about the limit set with an example, that illustrates how intricate
this concept can be and why we bother about considering several possible definitions of
it, which all coincide in the setting envisaged in Section 1.

Consider the following example from [31].

Example 2.2 Let γ ∈ PSL(3,C) be the projectivisation of the linear map γ̃ given by:

γ̃ =




α1 0 0
0 α2 0
0 0 α3





where α1α2α3 = 1 and |α1| < |α2| < |α3|. We denote by Γ the cyclic subgroup of
PSL(3,C) generated by γ; we may choose the αi so that Γ is conjugate to a subgroup of
PU(1, 2). Denote by {e1, e2, e3} the usual basis of C3. Each of these vectors represents a
complex line in C

3 and therefore determines a point in CP
2, that for simplicity we denote

also by {e1, e2, e3}; these are fixed points of the action, since the corresponding lines are
invariant. The conditions on the norm of the eigenvalues imply that the backwards orbit
of “almost” every point in CP

2 converges to e1, while most of the forward orbits converge
all to e3. To be precise, notice that since {e1, e2, e3} are fixed points, the lines joining
them, ←−→ei, ej, are invariant lines and the set of accumulation points of all orbits consists of
the points {e1, e2, e3}. The first of these is an attractor, the second is a saddle point and
the latter is a source.

It is not hard to show that:

i. Γ acts discontinuously on Ω0 = CP
2 − (←−→e1, e2 ∪ ←−→e3, e2), and also on Ω1 = CP

2 −
(←−→e1, e2 ∪ {e3}) and Ω2 = CP

2 − (←−→e3, e2 ∪ {e1}).

ii. Ω1 and Ω2 are the maximal open sets where Γ acts properly discontinuously; and
Ω1/Γ and Ω2/Γ are compact complex manifolds. (In fact they are Hopf manifolds).
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iii. Ω0 is the largest open set where Γ forms a normal family.

It follows that even if the set of accumulation points of the orbits consists of the points
{e1, e2, e3}, in order to actually get a properly discontinuous action we must remove a
larger set. Furthermore, in this example we see that there is not a largest region where
the action is properly discontinuous, since neither Ω1 nor Ω2 is contained in the other.

So one has several candidates to be called as “limit set”:

• The points {e1, e2, e3} where all orbits accumulate. But the action is not properly
discontinuous on all of its complement. Yet, this definition is good if we make this
group conjugate to one in PU(1, 2) and we restrict the discussion to the “hyperbolic
disc” H

2
C
contained in CP

2. This corresponds to taking the Chen-Greenberg limit
set of Γ, that we shall define below.

• The two lines ←−→e1, e2 , ←−→e3, e2, which are attractive sets for the iterations of γ (in one
case) or γ−1 (in the other case). This corresponds to Kulkarni’s limit set of Γ, that
we define below, and it has the nice property that the action on its complement is
properly discontinuous and also, in this case, equicontinuous. And yet, the propo-
sition above says that away from either one of these two lines the action of Γ is
discontinuous. So this region is not “maximal”.

• Then we may be tempted to taking as limit set the complement of the “maximal
region of discontinuity”, but there is no such region: there are two of them, the
complements of each of the two invariant lines, so which one we choose?

• Similarly we may want to define the limit set as the complement of “the equicon-
tinuity region”. In this particular example, that definition may seem appropriate.
The problem is that this would rule out important cases, as for instance the Hopf
manifolds, which can not be written in the form U/G where G is a discrete subgroup
of PSL(3,C) acting equicontinuously on an open set U of CP2. Moreover, there are
examples where Γ is the fundamental group of certain compact complex surfaces
(Inoue surfaces) and the action of Γ on CP

2 has no points of equicontinuity.

Thus one has different definitions with nice properties in different settings. Yet, it is
clear that when considering actions on CP

n the classical definition of the limit set is not
satisfactory because the action on its complement is not necessarily properly discontin-
uous. There is instead a refinement introduced by R. Kulkarni in [29]. This definition
of limit set applies in a very general setting of discrete group actions, and it has the
important property of assuring that its complement is an open invariant set where the
group acts properly discontinuously. This is as follows. Recall that given a family {Aβ}
of subsets of X, where β runs over some infinite indexing set B, a point x ∈ X is a cluster
(or accumulation) point of {Aβ} if every neighbourhood of x intersects Aβ for infinitely
many β ∈ B.
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Given a space X and a group G as above, let L0(G) be the closure of the set of points
in X with infinite isotropy group. Let L1(G) be the closure of the set of cluster points of
orbits of points in X − L0(G), i.e., the cluster points of the family {γ(x)}γ∈G, where x
runs over X − L0(G).

Finally, let L2(G) be the closure of the set of cluster points of {γ(K)}γ∈G, where K
runs over all the compact subsets of X − {L0(G) ∪ L1(G)}. We have:

Definition 2.3 Let X be as above and G a group of homeomorphisms of X.

i. The Kulkarni limit set of G in X is the set

ΛKul(G) := L0(G) ∪ L1(G) ∪ L2(G).

ii. The Kulkarni region of discontinuity of G is

ΩKul(G) ⊂ X := X − ΛKul(G).

It is easy to see that the set ΛKul(G) is closed in X and it is G-invariant (it can be
empty). The set ΩKul(G) (which also can be empty) is open, G-invariant, and G acts
properly discontinuously on it.

When G is a Möbius (or conformal) group, the classical definitions of the limit set and
the discontinuity set coincide with the above definitions.

In the sequel we will be looking at this limit set in comparison with other possible
limit sets, as for instance the complement of the region of equicontinuity.

Let us describe some specially interesting particular types of complex Kleinian groups
that illustrate the richness of the subject.

2.4 Complex hyperbolic groups

Let us look at the subset [N−] of CPn consisting of points with homogeneous coordinates
satisfying:

|z0|2 < |z1|2 + · · · |zn|2 . (2.4)

As noticed above, this set is an open ball B of real dimension 2n and its boundary,

[N0] := {(z0 : · · · : zn) ∈ CP
n | |z0|2 = |z1|2 + · · · |zn|2} ,

is a sphere of real dimension 2n− 1. This set [N−] is the usual starting point for complex
hyperbolic geometry; for this one needs to introduce a metric, which is known as the
Bergman metric. We shall do that in a way similar to the one we used for real hyperbolic
space.

Let U(n+1) be the unitary group. By definition, its elements are the (n+1)× (n+1)
matrices which satisfy

�Uz, Uw� = �z, w� ,
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for all complex vectors z = (z0, ..., zn) and w = (w0, ..., wn), where �·, ·� is the usual
hermitian product on C

n+1: �z, w� =
�n

i=0 zi · w̄i. This is equivalent to saying that the
columns of U form an orthonormal basis of Cn+1 with respect to the hermitian product.

We now let U(1, n) be the subgroup of U(n+ 1) of transformations that preserve the
quadratic form

Q(z0, · · · , zn) = |z0|2 − |z1|2 − · · ·− |zn|2 . (2.5)

In other words, an element U ∈ U(n+1) is in U(1, n) if and only if Q(z) = Q(Uz) for all
points in C

n+1. Let PU(1, n) be its projectivization. Then the action of PU(1, n) on CP
n

leaves invariant the set [N−]. To see this, recall that a point in CP
n is in [N−] if and only

if its homogeneous coordinates satisfy equation (2.5). If (z0 : · · · : zn) is in [N−] and γ is
in PU(1, n), then the point γ(z0 : · · · : zn) is again in [N−]. Therefore the group PU(1, n)
acts on the ball [N−] ∼= B

2n.
Recall that to construct the real hyperbolic space H

n
R
we considered the unit open

ball Bn in R
n+1, and we looked at the action of the Möbius group Möb+(Bn) on this ball.

This action was transitive with isotropy O(n,R). So we can consider the usual metric
at the space T0(Bn), tangent to the ball at the origin, and spread it around using that
the action is transitive; we get a well-defined metric on the ball using the fact that the
isotropy O(n,R) preserves the usual metric.

Let us now do the analogous construction for the ball [N−] using the action of PU(1, n):
It is an exercise to show that this action is transitive, with isotropy PU(n). Let P be the
center of this ball, P := (0 : 0 : · · · : 0 : 1). We equip the tangent space TP ([N−]) ∼= C

n

with the usual hermitian metric, and spread this metric around [N−] using the action of
PU(1, n). Since the isotropy PU(n) preserves the metric in TP ([N−]) we get a well-defined
metric on the ball [N−] ∼= B

2n. This is the Bergman metric on the ball [N−], which thus
becomes a model for the complex hyperbolic space H

n
C
, with PU(1, n) as its group of

holomorphic isometries. Its boundary [N0] is the sphere at infinity S
2n−1
∞ .

Since the action of PU(1, n) on H
n
C
is by isometries, then one has (by general results of

groups of transformations) that every discrete subgroup of PU(1, n) acts discontinuously
on H

n
C
. Hence, regarded as a subgroup of PU(n + 1), such a group acts on CP

n with
non-empty region of discontinuity. In other words, we have:

Every complex hyperbolic discrete group is a complex Kleinian group,

a statement that generalises to higher dimensions the well-known fact that every Fuchsian
subgroup of PSL(2,R) is Kleinian when regarded as a subgroup of PSL(2,C).

Consider now a discrete subgroup G of PU(1, n). As before, we take as model for
complex hyperbolic n-space H

n
C
the ball B ∼= B

2n in CP
n consisting of points with homo-

geneous coordinates satisfying

|z1|2 + · · ·+ |zn|2 < |z0|2 ,

whose boundary is a sphere ∂Hn
C
∼= S

2n−1
∞ , and we equip B with the Bergman metric ρ to

get Hn
C
.



2.4 Complex hyperbolic groups 27

The following notion was introduced in [18].

Definition 2.6 If G is a discrete subgroup of PU(1, n), then its Chen-Greenberg limit
set, denoted ΛCG(G), is the set of accumulation points of the G-orbit of any point in H

n
C
.

As remarked earlier in the real case, the fact that the action on H
n
C
is by isometries

and G is discrete implies that the orbit of every x ∈ H
n
C
must accumulate in ∂Hn

C
. Hence

the limit set ΛCG(G) is contained in the sphere at infinity, likewise in the conformal case.
Moreover, one also has the following result of Chern-Greenberg, which is a consequence
of the convergence property in complex hyperbolic geometry and the fact that the action
is by isometries of Hn

C
.

Proposition 2.7 If the set ΛCG(G) ⊂ X has more than two points, then every orbit in
ΛCG(G) is dense in ΛCG(G).

It is clear from the definition that ΛCG(G) is a closed invariant subset of S2n−1
∞ , and

the result above says that this set is minimal. In particular ΛCG(G) does not depend on
the choice of the orbit of the point in H

n
C
.

Thus, when considering subgroups of PU(1, n) acting on the complex hyperbolic space
H

n
C
, this definition of limit set is a good definition. Yet, if we consider the action of G on

the whole projective space, it is easy to show that the action is not properly discontinuous
away from the ball [N−] ⊂ CP

n, which serves as model for Hn
C
. So we need to introduce

another notion of limit set.

In the example 2.2 one has that the sets L0(G) and L1(G) are equal, and they consist
of the three points {e1, e2, e3}, while L2(G) consists of the lines ←−→e1, e2 and ←−→e2, e3, passing
through the saddle point.

That example also shows that although Kulkarni’s limit set has the property of assuring
that the action on its complement is discontinuous, this region is not always maximal.
Yet, one can show that in the case of actions of complex hyperbolic groups on CP

2,
“generically” this region is the largest open set where the action is discontinuous, and it
coincides with the region of equicontinuity, by [31].

A first obvious question is to determine the relation between these two notions of limit
set in the case of complex hyperbolic groups, as well as the relation of these sets with the
corresponding region of equicontinuity.

One has the following theorem due to J. P. Navarrete [31] in the two dimensional case,
and to A. Cano and J. Seade [17] in higher dimensions. For this, let S

2n−1
∞ ⊂ CP

n be
the boundary of Hn

C
, so it is the sphere at infinity. Notice that for each point x ∈ S

2n−1
∞

there is a unique complex projective subspace Hx of complex dimension n − 1 which is
tangent to S

2n−1
∞ at x. Given a discrete subgroup G ⊂ PU(1, n), let HG be the union of

all these projective subspaces for all points in the limit set ΛCG(G) ⊂ S
2n−1
∞ . This set is

clearly G-invariant, since ΛCG(G) is invariant and the G action on S
2n−1
∞ is by holomorphic

transformations.
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The following theorem was proved by J. P. Navarrete [] for n = 2, then extended
partially to higher dimensions by A. Cano and J. Seade in [17] and completed recently,
in full generality, by A. Cano, B. Liu and M. López in [14].

Theorem 2.8 Let G ⊂ PU(1, n) be a discrete subgroup and let Eq(G) be its equicontinuity
region in P

n
C
. Then P

n
C
\Eq(G) is the union of all complex projective hyperplanes tangent

to ∂Hn
C
at points in Λ(G), and G acts properly discontinuously on Eq(G). Moreover,

Eq(G) coincides with the Kulkarni region of discontinuity ΩKul(G).

We do not know yet whether or not in higher dimensions the Kulkarni region of
discontinuity of G coincides with the region of equicontinuity.

2.5 Complex Lorentzian and Schottky groups

In analogy with the previous subsection, we now consider a quadratic form in C
n+1 of

signature (n− q, q + 1), say:

Q(z0, ..., zn) = −|z0|− · · ·− |zq|+ |zq+1|+ · · · |zn| .

As before, we consider the sets of positive, null and negative vectors for this quadratic
form, and consider their projectivisations [N+], [N0], [N−].

The image of the null set [N−] in CP
n consists of points with homogeneous coordinates

satisfying:
|z0|2 + ....+ |zq|2 = |zq+1|2 + · · · |zn|2 . (2.9)

We now consider the group U(q + 1, n− q) of elements in U(n+ 1) that preserve the
above quadratic form, and we let PU(q+1, n−q) be its projectivisation. Then the action
of PU(q+1, n− q) on CP

n leaves invariant the sets [N+], [N0], [N−]. Notice that the null
set [N0], which is a smooth real hypersurface of CPn that splits this space in two parts,
is a closed and hence compact submanifold of CPn. Thence, if Γ is a discrete subgroup
of PU(q + 1, n− q) with infinite cardinality, then every Γ-orbit in [N0] has accumulation
points, and we can define a set:

Λ0(Q) = {[z] ∈ [N0] ⊂ CP
n
�� [z] is an accumulation point of some orbit in [N0]} .

Notice that at each [z] ∈ [N0] the tangent space of [N0], which is real of dimension
2n − 1, contains a unique complex subspace Lz of complex dimension n − 1. Both sets
Λ0(Q) and ΛK(Q) =

�
z∈Λ0(Q) Lz are closed invariant sets.

If q = 0, so that we are in the previously envisaged setting of complex hyperbolic
groups, then Theorem 2.8 says that ΛK(Q) is the Kulkarni limit set of Γ in CP

n. Is this
still true in general? I do not know the answer.

Let us consider now a special case of Lorentzian groups: the Schottky groups.
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Classical Schottky groups in PSL(2,C) play a key role in both complex geometry and
holomorphic dynamics. On the one hand, Köbe’s retrosection theorem says that every
compact Riemann surface can be obtained as the quotient of an open set in the Riemann
sphere S

2 which is invariant under the action of a Schottky group. On the other hand,
the limit sets of Schottky groups have rich and fascinating geometry and dynamics, which
has inspired much of the current knowledge we have about fractal sets and 1-dimensional
holomorphic dynamics.

These are subgroups of PSL(2,C) obtained by considering disjoint families of circles in
CP

1 ∼= S
2. These circles play the role of mirrors that split the sphere in two diffeomorphic

halves which are interchanged by a conformal map, and these maps generate the Schottky
group.

In this subsection we briefly discuss a generalisation to higher dimensions studied
in [36] of the classical Schottky groups . The idea is to construct appropriate mirrors
in the complex projective space that split it in two parts which are interchanged by a
holomorphic authomorphism, and then use these to construct discrete subgroups. This is
possible only in odd dimensions. We refer to [36] for details (see also [15]).

Consider the subspaces of C2n+2 = C
n+1 × C

n+1 defined by L0 := {(a, 0) ∈ C
2n+2}

and M0 := {(0, b) ∈ C
2n+2}. Let S be the involution of C2n+2 defined by S(a, b) = (b, a),

which clearly interchanges L0 and M0.
The following elementary lemma is a starting point.

Lemma 2.10 Let Φ : C2n+2 → R be given by Φ(a, b) = |a|2 − |b|2 . Then:

i. The set ES := Φ−1(0) is a real algebraic hypersurface in C
2n+2 with an isolated

singularity at the origin 0. It is embedded in C
2n+2 as a (real) cone over S

2n+1 ×
S
2n+1, with vertex at 0 ∈ C

2n+2.

ii. This set ES is invariant under multiplication by λ ∈ C, so it is in fact a complex cone
that separates C2n+2 \{(0, 0)} in two diffeomorphic connected components U and V ,
which contain respectively L0 \{(0, 0)} and M0 \{(0, 0)}. These two components are
interchanged by the involution S, for which ES is an invariant set.

iii. Every linear subspace K of C2n+2 of dimension n+2 containing L0 meets transver-
sally ES and M0. Therefore a tubular neighbourhood V of M0 \ {(0, 0)} in CP

2n+1

is obtained, whose normal disc fibres are of the form K ∩ V , with K as above.

Since ES is a cone, we have that [ES \ {0}]2n+1 is a codimension 1 real submanifold of
CP

2n+1, that we denote simply by ES. As a consequence of the previous lemma we have:

Corollary 2.11 i. ES is an invariant set of the involution [S]2n+1.

ii. ES is an S
2n+1-bundle over CP

n; in fact ES is the sphere bundle associated to the
holomorphic bundle (n+ 1)OCPn, which is the normal bundle of CPn in CP

2n+1.
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iii. ES separates CP2n+1 in two connected components which are interchanged by [S]2n+1

and each one is diffeomorphic to a tubular neighbourhood of the canonical CPn in
CP

2n+1.

Definition 2.12 We call ES the canonical mirror and [S]2n+1 the canonical involution.

It is an exercise to show that Lemma 2.10 holds in the following more general setting.
Of course one has the equivalent of Corollary 2.11 too.

Lemma 2.13 Let λ be a positive real number and consider the involution

Sλ : Cn+1 × C
n+1 → C

n+1 × C
n+1 ,

given by Sλ(a, b) = (λb,λ−1a). Then Sλ also interchanges L0 and M0, and the set

Eλ = {(a, b) : |a|2 = λ2|b|2}

satisfies, with respect to Sλ, the analogous properties (i)-(iii)of Lemma 2.10 above.

We notice that as λ tends to ∞, the manifold Eλ gets thinner and approaches the
L0-axes.

Consider now two arbitrary disjoint projective subspaces L and M of dimension n in
CP

2n+1. As before, we denote by [ ]2n+1 the natural projection C
2n+2 → CP

2n+1. It is
clear that C

2n+2 splits as a direct sum C
2n+2 = [L]−1

2n+1 ⊕ [M ]−1
2n+1 and there is a linear

automorphism H of C2n+2 taking [L]−1
2n+1 to L0 and [L]−1

2n+1 to M0. For every λ ∈ R+ the
automorphism [H−1 ◦ Sλ ◦H]2n+1 is an involution of CP2n+1 that interchanges L and M .

Definition 2.14 A mirror in CP
2n+1 means the image of the canonical mirror ES under

an element of PSL(2n + 2,C).

Observe that a mirror is the boundary of a tubular neighbourhood of a CP
n in CP

2n+1,
so it is an S

2n+1-bundle over CPn. For n = 0 mirrors are just circles in CP
1 ∼= S

2; one has
that for n = 1 (and only in that dimension) this bundle is trivial, so in CP

3 mirrors are
copies of S3 × S

2. One has:

Lemma 2.15 Let L and M be as above. Given an arbitrary constant λ, 0 < λ < 1, we
can find an involution T interchanging L and M , with a mirror E such that if U∗ is the
open component of CP2n+1\E which contains M and x ∈ U∗, then d(T (x), L) < λd(x,M),
where the distance d is induced by the Fubini-Study metric.

We notice that the parameter λ in 2.15 gives control upon the degree of expansion and
contraction of the generators of the group, so one can estimate bounds on the Hausdorff
dimension of the limit set.

The previous discussion can be summarised in the following theorem:
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Theorem 2.16 Let L1, . . . , Lr be disjoint projective subspaces of CP2n+1 of dimension n,
r > 1. Then:

i. There exist involutions T1, . . . , Tr of CP2n+1 with mirrors ETj such that if Nj denotes
the connected component of P2n+1 \ETj that contains Lj then {Nj ∪ETj} is a closed
family of pair-wise disjoint sets.

ii. Γ = �T1, . . . , Tr� is a discrete group with nonempty region of discontinuity.

iii. Given a constant C > 0, we can choose the T �
js so that if T := Tj1 · · ·Tjk is a

reduced word of length k > 0 (i.e., j1 �= j2 �= · · · �= jk−1 �= jk), then T (Ni) is a
tubular neighbourhood of the projective subspace T (Li) which becomes very thin as
k increases: d(x, T (Li)) < Cλk for all x ∈ T (Ni).

A group as in Theorem 2.16 was called Complex Schottky in [36]. It follows from
the previous theorem that the set W = CP

2n+1 \ ∪r
i=1Int(Ni) , where Int(Ni) is the

interior of the tubular neighbourhoods Ni as in Theorem 2.16, is a compact fundamental
domain for the action of Γ on the open set ΩSV(Γ) =

�
γ∈Γ γ(W ) ; and the action on ΩS

is properly discontinuous.

Definition 2.17 For a Schottky subgroup Γ ⊂ PSL(2n + 1,C) as above we may define
ΩSV(Γ) to be the SV-region of discontinuity. Then we have the SV-limit set ΛSV :=
CP

n \ ΩSV(Γ).

Theorem 2.18 Let Γ be a complex Schottky group in CP
2n+1, generated by involutions

{T1, . . . , Tr} , n ≥ 1 , r > 2, as in Theorem (2.16) above. Let ΩSV(Γ) be the region of
discontinuity of Γ and let ΛSV(Γ) = CP

2n+1 \ ΩSV(Γ) be the above limit set. Then:

i. ΛSV(Γ) is a complex solenoid (lamination) homeomorphic to CP
n × C , where C is a

Cantor set. Γ acts minimally on the set of projective subspaces in ΛSV(Γ) considered
as a closed subset of the Grassmannian G2n+1,n.

ii. Let Γ̌ ⊂ Γ be the index 2 subgroup consisting of the elements which are reduced words
of even length. Then W̌ = W ∪ T1(W ) is a fundamental domain for the action of Γ̌
on ΩSV(Γ).

iii. Each element γ ∈ Γ̌ leaves invariant two copies, P1 and P2, of CPn in ΛSV(Γ). For
every L ⊂ ΛSV(Γ), γi(L) converges to P1 (or to P2) as i → ∞ (or i → −∞).

We now observe that one has the following, which is a particular case of a more general
theorem due to V. Alderete, A. Cano and C. Cabrera:

Theorem 2.19 The above Schottky groups are, up to conjugation, subgroups of PU(n, n).

It follows that one has for these the limit sets discussed in the previous section (for
subgroups of PU(p, q) in general). And it is natural to ask, in the case of the above
Schottky groups, what is the relation of all these limit sets (It is clear that ΛSV(Γ) ⊂
ΛKul(Γ)).
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2.6 Kleinian groups and twistor theory

There is a construction by Seade and Verjovsky of complex Kleinian groups via twistor
theory that we now recall. Twistor theory is an important area of geometry and mathe-
matical physics, developed by various authors, most notably by Roger Penrose, in the late
1970s. There are also important contributions by M. Atiyah, N. Hitchin and several other
authors. The idea is that each even-dimensional, oriented Riemannian manifold M has its
twistor space Z(M), a manifold which is a fibre bundle over M , and which under certain
differential geometric restrictions on M , has a canonical complex structure. Furthermore,
Penrose’s twistor program springs from the fact that there is a rich interplay between the
conformal geometry of the manifold M and the complex geometry of its twistor space.
What Seade and Verjovsky did was showing that this interplay between the conformal
geometry of M and the complex geometry of its twistor space can be pushed forward to
dynamics. As a consequence we obtain that every conformal Kleinian group, or rather,
every group of isometries of a real hyperbolic space (with non-empty region of discontinu-
ity in the sphere at infinity) can be realised as a complex Kleinian group, i.e., as a discrete
group of holomorphic transformations of some complex projective space, with non-empty
region of discontinuity.

This theory is particularly nice when the manifold M is the 4-sphere S4 endowed with
its usual metric, and that is what we shall focus on in this section. The corresponding
twistor space turns out to be the complex projective space CP

3. This particular case is
also relevant for other interesting problems in differential geometry, studied independently
by E. Calabi. Hence in this case the twistor fibration:

π : CP3 −→ S
4 ,

is also known as the Calabi-Penrose fibration.
To construct this fibration, recall first that the complex projective line CP

1 is the
space of lines through the origin in C

2, and so it is diffeomorphic to the sphere S
2. We

claim that, similarly, the sphere S
4 is diffeomorphic to the quaternionic projective line

HP
1. Let us explain this.
Recall that the complex numbers can be regarded as being R

2 with a richer structure,
coming from the fact that we have added the symbol i, which corresponds to the point
(0, 1) in R

2, with i2 = −1. Similarly, we have the space of quaternions H. As a set, this is
R

4, a four-dimensional vector space over the real numbers, equipped with a richer struc-
ture, obtained by quaternionic multiplication. To define this multiplication we consider
the usual basis of R4 and let i = (0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1); we identify
the scalar 1 with the vector (1, 0, 0, 0). Then we define a multiplication by setting:

i2 = j2 = k2 = ijk = −1

From this we get the well-known relations ij = k; jk = i; ki = j, and also ij = −ji and
so on. We extend this multiplication to all elements in H in the obvious way using that
1, i, j, k form a basis it as a vector space.
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Notice that every quaternion can be expressed as:

q = a0 + a1i+ a2j + a3k = (a0 + a1i) + (a2 + a3i)j = z1 + z2j .

So we see that every quaternion can be regarded as a pair of complex numbers, just as
each complex number can be regarded as a pair of real numbers.

We consider now the space C
4 and we identify it with H ×H = H2. Notice that we

can multiply vectors in v ∈ C
4 by complex numbers (scalars) in the usual way:

λ · (z1, z2, z3, z4) = (λz1,λz2,λz3,λz4) .

Doing so, each vector v ∈ C
4 determines a unique complex line �v in C

4 passing through
the origin:

�v := {z = (z1, z2, z3, z4) ∈ C
4 | z = λ v , for some λ ∈ C} .

Similarly, given a vector v ∈ H2 ∼= C
4, we can multiply it by quaternions, but one must

decide to use either right or left multiplication (now this does matter, since this multipli-
cation is non-commutative). In either case one gets, for each vector v, a quaternionic line
Lv, which is a 4-plane:

Lv := {q = (q1, q2) ∈ H2 | q = λ v , for some λ ∈ H} .

Notice that each quaternionic line is actually a copy of C2 embedded in C
4, spanned by

the complex lines �v and �jv. In fact Lv is filled by complex lines.
Just as CP3 is obtained from C

4 \ 0 by identifying points in the same complex line, so
too we can form the quaternionic projective space:

HP
1 :=

H2 \ 0
H∗

∼= S
7/S3 ,

the space of left quaternionic lines in H ×H. In other words, two non-zero quaternions
q1, q2 are identified if there is another quaternion q such that q q1 = q2.

We leave it as an exercise to show that, just as one has:

RP
1 ∼= S

1 and CP
1 ∼= S

2 ,

so too one has:
HP

1 ∼= S
4 .

Therefore we see that if in C
4 ∼= H2 :

i) We identify each complex line to a point, then we get CP3;
ii) And if we identify each quaternionic line to a point, we get HP

1 ∼= S
4 .

Since every complex line is contained in a unique quaternionic line, we thus get a projection
map:

π : CP3 −→ HP
1 ,
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which is easily seen to be a locally trivial fibration, i.e., a fibre bundle. For each point
[q1 : q2] ∈ HP

1 the fiber π−1([q1 : q2]) consists of all the complex lines through the origin
in C

4 ∼= H2 which are contained in the same quaternionic line, which is a copy of C2.
Hence each fibre is diffeomorphic to CP

1 ∼= S
2.

This is the Calabi-Penrose fibration, also known as the twistor fibration of the 4-sphere.

We now recall that one has a group isomorphism:

Conf+(S
2) ∼=

�az + b

cz + d

��� a, b, c, d ∈ C

�
∼= PSL(2,C) .

The proof of these facts can be adapted to showing the analogous statements (see Ahlfors’
works [2, 3]):

Conf+(S
4) ∼=

�
(az + b)(cz + d)−1

��� a, b, c, d ∈ H
�

∼= PSL(2,H) ,

where the latter is the projectivisation of the group of 2 × 2 invertible matrices with

coefficients in H and determinant one. Notice that one such matrix

�
a b
c d

�
acts linearly

on H2, and so it also acts on C
4 ∼= H2, with quaternionic multiplication being regarded

as a 2× 2 complex matrix. Hence there is a natural embedding

Conf+(S
4) �→ PSL(4,C) .

Therefore we get:

Proposition 2.20 Every group of orientation preserving isometries of the real hyperbolic
space H

5
R
has a canonical lifting to a group of holomorphic automorphisms of the complex

projective space CP
3.

CP
3

�Γ−−−→ CP
3

π

�
�π

S
4 Γ−−−→ S

4

This result is well-known in full generality (not only for the 4-sphere) for people
working in twistor theory; this is also proved in [35] in a different way, using twistor theory.
Notice that given an element γ ∈ Conf+(S4), its lifting to PSL(4,C) is an automorphism
of CP3 that carries fibres of π into fibres of π, and these are copies of S2. The fibres of π
are called twistor lines, and it turns out that the action of Γ on CP

3 carries twistor lines
into twistor lines isometrically. Using this one can prove (see [35]):

Theorem 2.21 Let Γ ⊂ Conf+(S4) be a Kleinian group and let Ω(Γ) ⊂ S
4 be its region

of discontinuity in the sphere. Denote by �Γ its lifting to PSL(4,C). Then:
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• The Kulkarni region of discontinuity ΩKul(�Γ) is π−1(Ω(Γ)).

• The action of �Γ on the limit set ΛKul(�Γ) := CP
3 \ ΩKul(�Γ) is minimal if and only

if Γ is either Zariski dense in Conf+(S4) or else it is conjugate in Conf+(S4) to a
Zariski dense subgroup of Conf+(S3).

• The quotient ΩKul(�Γ)/�Γ is an orbifold with a complex projective structure, and it is
a manifold whenever Γ is torsion-free.

Similar statements hold in higher dimensions (see [35]; also [36]).
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3 THE LIMIT SET IN DIMENSION TWO

Let us recall first some facts about the limit set for classical Kleinian groups that we dis-
cussed already. The following theorem summarizes several of the fundamental properties
of the limit set.

Theorem 3.1 Let G be a discrete subgroup of PSL(2,C) ∼= Iso(H3
R
) of infinite cardinality,

acting on the closed ball H3
R
∪∂H3

R
. Let Λ be its limit set and Ω its region of discontinuity

in the sphere S
2 (regarded as the boundary of the hyperbolic 3-space). Then:

i. The set Λ is contained in S
2.

ii. Ω and Λ are complementary: Ω = CP
1 \ Λ.

iii. The set Λ is closed, non-empty and G-invariant.

iv. The action on the region of discontinuity Ω actually is properly discontinuous;

v. If Λ has finite cardinality, then it consists of at most two points and the group is
said to be elementary.

Furthermore, one has:

Theorem 3.2 Assume G is non-elementary, then:

i. Λ is minimal (every orbit is dense) and perfect.

ii. Ω is the largest set where the action is properly discontinuous;

iii. Ω is also the equicontinuity set for the G-action.

There is one more, very important, characterization of the limit set that comes from
dynamics. For this we recall that every element in PSL(2,C) has a lifting to SL(2,C).
The corresponding Jordan form is either of the form

�
1 1
0 1

�
or

�
λ 0
0 λ−1

�
,

for some non-zero complex number λ. In the first case the element in PSL(2,C) is said to
be parabolic; in the second case it is elliptic if the eigenvalues have norm 1, or loxodromic
otherwise.

We can describe this classification also by thinking of PSL(2,C) as being the group
of Möbis transformation: Every such map is conjugate to either a translation of to a
map of the form z �→ λz for some non-zero complex number λ; in the first case we have
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a parabolic element, and in the second case we have either an elliptic or a loxodromic
element, depending on the norm of λ.

Notice that parabolic elements have only one fixed points, while every loxodromic
element has two fixed points, one of these is attracting and the other repulsing. If we now
look at the corresponding cyclic groups, the corresponding limit set consists of the fixed
points, so it consists of either one or two points.

Elliptic elements are rotations; these also have two fixed points. The corresponding
limit set is either empty, if the rotation is by a rational angle so that the group has finite
order, or it is the whole sphere S

2 if we are rotating by an irrational angle.
Coming back to groups, one has:

Theorem 3.3 Let G be a non-elementary discrete subgroup of PSL(2,C). Then its limit
set is the closure of the set of fixed points of loxodromic elements.

In the sequel we describe how these properties extend to complex dimension 2. First
we give a classification that works in general.

3.1 Classification of the elements in PSL(n + 1,C)

The above classification of the elements in PSL(2,C) extends to higher dimensions as
follows. We refer to [19] for the case of elements in PU(1, n). The case n = 2 is proved
in [32] and the general caseis proved in the recent paper [12] (see [10] for a thorough
discussion of this classification). There are also several other related papers by Parker,
Gongopadhyay and others. Here we restrict to what we need in the sequel and we refer
to the bibliography for more on the topic.

We now discuss the classification in [12] of the elements in PSL(n + 1,C). We start
with the definition.

Definition 3.4 Consider an element g ∈ PSL(n + 1,C). Then g is:

i. Elliptic if it has a lifting to SL(n+1,C) which is diagonalizable with all eigenvalues
of norm 1.

ii. Parabolic if it has a lifting to SL(n + 1,C) which is non-diagonalizable with all
eigenvalues of norm 1.

iii. Loxodromic if it has a lifting to SL(n + 1,C) with at least one eigenvalue having
norm �= 1.

The classification theorem for the elements in PSL(2,C) extends beautifully to higher
dimensions. Notice that the only proper projective subspaces of CP1 are points.
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Theorem 3.5 Let g be an element in PSL(n + 1,C). Then g is:

• Elliptic if and only if it either has finite order or else every point in CP
n is an

accumulation point of some g-orbit.

• Parabolic if and only its Kulkarni limit set consists of exactly one proper projective
subspace of CPn.

• Loxodromic if and only if its Kulkarni limit set consists of exactly two proper pro-
jective subspaces of CPn(which can have different dimensions).

Remark 3.6 [The equicontinuity region] It is worth saying that in complex dimen-
sions 1 and 2, the equicontinuity region of parabolic and loxodromic elements coincides
with the Kulkarni region of discontinuity. In higher dimensions there exist parabolic
and loxodromic elements for which the Kulkarni region of discontinuity and the region of
equicontinuity do not coincide. We refer to [10] for an explicit example, and to [12] for
further discussion on this topic.

Let us focus now on loxodromic elements in PSL(3,C). From the previous theorem we
know that the Kulkarni limit set must consist of two projective subspaces of dimensions
0 or 1. In fact there are two possibilities: ΛKul either has two projective lines or one line
and one point (see [32, 15, 10, 12]). For instance, with two lines in the limit set we already
have Example (2.2), the projectivisation of the linear map γ̃ given by:

γ̃ =




α1 0 0
0 α2 0
0 0 α3



 ,

where α1α2α3 = 1 and |α1| < |α2| < |α3|.
The limit set ΛKul is the union of the two lines ←−→e1, e2 , ←−→e3, e2, which are attractive sets

for the iterations of γ (in one case) or γ−1 (in the other case).

The following is an example where ΛKul is the union of a line and a point. Let G be
the cyclic group generated by the projectivization of the map:

γ̃ =




α 0 0
0 α 0
0 0 α−2



 , with |α| �= 1 .

Then L0(G) = L1(G) = L2(G) is the union of the line ←−→e1, e2 and the point e3. Hence
ΛKul(G) is now:

ΛKul(G) = ←−→e1, e2 ∪ {e3} .
Notice that in this example the invariant line is attracting and the fixed point is repelling
or viceversa, depending on the norm of α.
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As an example of a parabolic element consider the projectivisation of the map:

γ̃ =




1 1 0
0 1 1
0 0 1



 .

This has 1 as the only eigenvalue. Now we have L0 = L1 = {e1}, L2 =
←−→e1, e2 , and ΛKul(G)

consists of a single line:

ΛKul(G) = ←−→e1, e2 .

3.2 The limit set in dimension two

One has the following theorem proved by W. Barrera, A. Cano and J. P. Navarrete. We
recall that a family of projective lines in CP

2 are said to be in general position if no three
of them meet.

Theorem 3.7 Let Γ be an infinite discrete subgroup of PSL(3,C) and let ΛKul ⊂ P
2
C
be

its Kulkarni limit set. Then:

i. The set ΛKul always contains at least one projective line.

ii. The number of lines in ΛKul is either 1, 2, 3 or infinite.

iii. The number of lines in ΛKul lying in general position is either 1, 2, 3, 4 or infinite.

iv. The number of isolated points in ΛKul is at most 1, and if there is one such point, then
the group is virtually cyclic (generated by a loxodromic element) and ΛKul consists
of 1 line and 1 point.

The first statement in this theorem follows easily from the classification theorem of
cyclic groups. This, together with statements (ii) and (iii) are proved in [8]. Statement
(iv) is proved in [13] One ingredient of the proof is, in all cases, showing that there exist
groups as stated: This is done explicitly. Then one must prove that there are no more
possibilities, i.e., that if the limit set has “enough lines” then it has infinitely many of
them. The proof uses the theory of pseudo-projective transformations introduced in [17].
A key ingredient for that classifications is the following refinement in [6] of the classical
Montel-Cartan theorem (cf. [28]).

Theorem 3.8 (Barrera-Cano-Navarrete) Let F ⊂ PSL(3,C) and Ω ⊂ P
2
C
be a do-

main. If
�

f∈F f(Ω) omits at least 3 lines in general position in P
2
C
, then F is a normal

family in Ω.
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Notice that cyclic groups already provide examples where the number of lines in ΛKul

is either 1 or 2, and also an example where it has 1 line and 1 point. The classification of
groups with exactly one line in their limit set is given in [11], and that of groups with 2
lines is done in [13].

Examples of groups with exactly 3 lines in general position in their limit set are easy
to construct. For instance take the example (2.2) with two lines in the limit set, and
now introduce a new generator that permutes the points e1, e2, e3; then the new limit
set consists of the three invariant lines determined by these points. And the complete
classification of the groups in PSL(3,C) with at most three lines in their limit set is given
in [13].

The construction of examples with exactly 4 lines in general position is not that simple
and we refer to [7], where the authors also give the complete classification of such groups.

Examples of groups with infinitely many lines in general position in their limit set,
and acting on CP

2 with a non-empty region of discontinuity, are easy to provide. Such
famillies, with rich dynamics, aregiven in [13] (see also [9]). Other interesting families
are given in [16] and these are easy to describe: Consider first a cofinite Fuchsian group
Γ in PU(1, 1) and embed it in the obvious way in PU(2, 1), so it acts on CP

2. It leaves
invariant a complex projective line L and it has a fixed point e3 away from L. Then the
Kulkarni limit set consists of the pencil of projective lines joining e3 with a point in L.
Notice that all these lines meet at e3 so that ΛKul only has two lines in general position.

Now consider the same Fuchsian group Γ but think of it as a subgroup of SO(2, 1)
and embed it in PU(2, 1) in the obvious way. It now leaves invariant the real Lagrangian
plane P ∼= RP

2 in CP
2 of points with real homogeneous coordinates. In this case one can

check (see [16]) that the limit set ΛKul has infinitely many lines in general position.

We may now state the theorem from [13] which says that in complex dimension 2,
just as in dimension 1, the concept of limit set is well-defined generically. In dimension
1 we must rule out the cases when the limit set has “few” points to have the theorem
saying that the limit set is a minimal set which is the closure of the set of fixed points of
loxodromic elements, and its complement Ω is the largest set where the action is properly
discontinuous and it coincides with the equicontinuity set. The corresponding statement
in dimension 2 is given below. First we have:

Definition 3.9 Let G be a discrete subgroup of PSL(3,C). We say that its action on
CP

2 is strongly irreducible if there is no a points nor projective lines in CP
2 with finite

orbit.

It is an exercise to show that this condition implies that the group has infinitely many
lines in general position in its Kulkarni limit set (see [13]).
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Theorem 3.10 Let G be a discrete subgroup of PSL(3,C) with at least 3 lines in general
position in its limit set ΛKul. Then:

i. The set ΛKul is the closure of the set of attractive and repelling invariant lines of
loxodromic elements.

ii. The set ΩKul := ΛKul is the largest set in CP
2 where the action is properly discon-

tinuous. Moreover, ΩKul also is the equicontinuity set for the G-action on CP
2.

iii. The action on ΛKul may or may not be minimal, yet, if the action is strongly irre-
ducible, then the induced action on the space of lines in CP

2, i.e., the action on the
dual CP̌2, is minimal on the dual set of ΛKul.

The table below summarizes the previous discussion.

Table 1: Dictionary between complex dimensions 1 and 2

The limit set Λ contains The Kulkarni limit set ΛKul contains
1, 2 or ∞-many points 1, 2, 3 or ∞-many lines,

and it contains 1, 2, 3, 4 or ∞-many
lines in general position

The group is elementary if The group is elementary if ΛKul has
Λ has finite cardinality finitely many lines in general position

If the group is non-elementary: If the group is non-elementary:
Λ is the closure of the set of ΛKul is a union of lines and

fixed points of loxodromic elements it is the closure of the set of invariant
repulsive lines of loxodromic elements

Its complement Ω is the Its complement ΩKul is the
largest set where the action is largest set where the action is

properly discontinuous properly discontinuous

Ω also is ΩKul also is
the region of equicontinuity the region of equicontinuity

The action on Λ If there are no projective subspaces
is minimal with finite orbit, then the action on

the space of lines in ΛKul is minimal
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José Seade
Instituto de Matemáticas,
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