Lorentzian Geometry II

Todd A. Drumm (Howard Univeristy, USA)

ICTP

25 August 2015
Trieste, Italy

Deformations

- Reprsentations of a group G.
- ϕ is a representation, $\phi: G \rightarrow \mathrm{GL}(k)$
- ψ is an affine representation, $\psi: G \rightarrow \operatorname{Isom}\left(\mathrm{E}^{n, m}\right)=\mathrm{SO}(n, m) \ltimes \mathbf{R}^{n, m}$
- Linear map
- Projection: $\mathbb{L}: \operatorname{Aff}\left(\mathrm{E}^{n, m}\right) \rightarrow \mathrm{GL}(n, m)$
- $\mathbb{L}(A, a)=A$
- Set $\Gamma=\phi(G)$
- Cocycle map (not a homomorphism)
- $u: \Gamma \rightarrow \mathbf{R}^{n, m}$
- $u(A)=$ a where A and a are as a above.
- Deformation of Γ is a continuous $\Phi_{t}: I \times G \rightarrow G L(n, m)$ such that Φ_{t} are all representations of G and $\Phi_{0}(G)=\Gamma$.

Affine Deformations

- An affine deformation of Γ is a map $\varphi: \Gamma \rightarrow \operatorname{Isom}\left(\mathrm{E}^{n, m}\right)$ such that $\mathbb{L} \circ \varphi=\mathbb{I}$
- Defined by cocycle, $u: \Gamma \rightarrow \mathbf{R}^{n, m}$
- $\varphi(A)=(A, u(A))$.
- $u(A B)=u(A)+A u(B)$
- If φ_{1} and φ_{2} are conjugate by a translation v then $\delta_{\mathrm{v}}=u_{1}(A)-u_{2}(B)=\mathrm{v}-A(\mathrm{v})$ is a coboundary
- Cohomology class of deformations
- $Z\left(\Gamma, \mathbf{R}^{n, m}\right)$ is all affine deformations of Γ, that is the set of all cocycles.
- $B(\Gamma)$ is the seet of all coboundaries.
- $H^{1}\left(\Gamma, \mathbf{R}^{n, m}\right)$ describe translationally conjugate affine deformations of Γ

Three dimensions with $\operatorname{rk}(\Gamma)=2$

- First: Linear part
- Suppose $\Gamma=\langle A, B\rangle=\langle A, B, C \mid A B C=I d\rangle$
- Γ is determined by $(\operatorname{tr}(A), \operatorname{tr}(B), \operatorname{tr}(C))$.
- Up to conjugation.
- Two of three generators can be mutliplied by -1 .
- Nielsen moves, e.g. $(A, B, C) \mapsto\left(A, B^{-1}, B A^{-1}\right)$.
- Affine deformation φ of a fixed $\Gamma=\langle A, B, C| A B C=|d\rangle$
- $\mathcal{A}=\varphi(A), \mathcal{B}=\varphi(B), \mathcal{C}=\varphi(C)$
- Affine deformation defined by $(\alpha(\mathcal{A}), \alpha(\mathcal{B}), \alpha(\mathcal{C}))$
- Up to translational conjugacy.
- $H^{1}\left(\Gamma, \mathbf{R}^{2,1}\right)$ is 3-dimensional.

Three dimensions with $\operatorname{rk}(\Gamma)=2$

- Proper deformations of a group $\Gamma, \mathcal{P}(\Gamma)$
- Projectiveness
- $(A, k \mathrm{a}) \cdot(B, k b)=(A B, k a+A(k b))=(A B, k(\mathrm{a}+A \mathrm{~b}))$
- $\alpha(A, k z)=k \alpha(A, a)$
- Affine deformation of Γ defined by cocycle u is proper if and only if affine deformation of Γ defined by $k u$ is proper.
- Opposite sign lemma implies that $\mathcal{P}(\Gamma)$ lie inside $(+,+,+)$ and the $(-,-,-)$.
- Enough to consider intersection of $\mathcal{P}(\Gamma)$ with $x+y+z=1$.
- Plane defined by $\alpha(\mathcal{A})=0$ lies outside $\mathcal{P}(\Gamma)$.
- Enough to consider 0-planse for (A, a) where $A \in \Gamma$ is primitive.

Proper Deformations of Three-Holed Spheres

- H^{2} / Γ is a three holed sphere,
- $\Gamma=\langle A, B, C\rangle$, and A, B, C correspond to boundary closed geodesics.
- A deformation of Γ is proper if and only if $\alpha(\mathcal{A}), \alpha(\mathcal{B}), \alpha(\mathcal{C})$ are all the same sign.

Proper Deformations of Two-holed Cross Surface

- H^{2} / Γ is a two-holed cross surface (unorianted).
- For proper deformation $\phi(\Gamma), \mathrm{E} / \phi(\Gamma)$ is orientable.
- $\mathcal{P}(\Gamma)$ is four-sided.

Proper Deformations of One-holed Klein Bottle

- H^{2} / Γ is a one-holed Klein bottle.
- $\mathcal{P}(\Gamma)$ has an infinite number of sides.

Proper Deformations of One-holed Torus

- H^{2} / Γ is a one-holed torus.
- $\mathcal{P}(\Gamma)$ has an infinite number of sides.

A Lie group and its Lie algebra

- $\operatorname{SL}(2, \mathbf{R}) \cong \mathrm{SO}(2,1)$
- 2×2 real matrices with determinant 1 .
- Lie Group
- $\mathfrak{s l}(2, \mathbf{R})$
- 2×2 real matrices with trace 0 .
- Lie algebra, tangent space to $\operatorname{SL}(2, \mathbf{R})$ at \mathbb{I}.
- Linear structure.
- Killing form (multiple): $\mathbb{B}(\mathfrak{u}, \mathfrak{v})=\frac{1}{2} \operatorname{tr}(\mathfrak{u v})$
- $\mathfrak{e}_{1}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \mathfrak{e}_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \mathfrak{e}_{3}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
- $\mathbf{R}^{2,1} \cong \mathfrak{s l}(2, \mathbf{R})$, where $(a, b, c) \mapsto a \mathfrak{e}_{1}+b \mathfrak{e}_{2}+c \mathfrak{e}_{3}$

Another view of the Margulis invariant

- $\mathrm{SL}(2, \mathbf{R}) \mapsto \mathfrak{s l}(2, \mathbf{R})$
- $\mathfrak{g l}(2, \mathbf{R})$
- The set of 2×2 real matrices.
- $\mathrm{SL}(2, \mathbf{R}) \hookrightarrow \mathfrak{g l}(2, \mathbf{R})$, where $A \mapsto A$.
- $\Pi: \mathfrak{g l}(2, \mathbf{R}) \rightarrow \mathfrak{s l l}(2, \mathbf{R})$, where $\Pi(A)=A-\frac{\operatorname{tr}(A)}{2} \mathbb{I}$
- Calculation for hyperbolic diagonal $A= \pm\left[\begin{array}{ll}k & \\ & k^{-1}\end{array}\right]$
- $\Pi(A)= \pm \frac{1}{2}\left[\begin{array}{ll}k-k^{-1} & \\ & k^{-1}-k\end{array}\right]$
- $\sqrt{\mathbb{B}(\Pi(A), \Pi(A))}=\sqrt{\left(\operatorname{tr}(A)^{2}-4\right) / 4}$
- $\frac{2 \sigma \operatorname{tr}(A)}{\sqrt{\operatorname{tr}(A)^{2}-4}} \Pi(A)=\left[\begin{array}{ll}-1 & \\ & 1\end{array}\right]=A^{0}$, where $\sigma=\operatorname{tr}(\operatorname{sign}(A))$
- $\alpha(\mathcal{A})=\frac{\operatorname{tr}(u(A) A) \cdot \sigma}{\sqrt{\operatorname{tr}(A)^{2}-4}}$
- From: $\mathbb{B}\left(\mathcal{A}(O), A^{0}\right)=\operatorname{tr}\left(u(A) \frac{\sigma \operatorname{tr}(A)\left(A-\frac{\operatorname{tr}(A)}{2} \mathbb{I}\right)}{\sqrt{\operatorname{tr}(A)^{2}-4}}\right)$

Translation Length

- Let $\mu_{t}: G \rightarrow \operatorname{SL}(2, \mathbf{R})$ be a smooth deformation where derivative at $A \in G$ is $u(A)$
- $\tau_{A}:=\left|\operatorname{tr}\left(A\left(\mathbb{I}+\left(t u(A)+\mathrm{O}\left(t^{2}\right)\right)\right)\right)\right|$
- $\frac{d \tau_{A}}{d t}(0)=\sigma \operatorname{tr}(A u(A))$
- Positve α corresponds to infinitesimal lengthening of a closed geodesic on the underlying surface.
- Results and Extensions
- Goldman-Labourie-Margulis "extend α to a continuous function."
- $\mathcal{C}(\Sigma)$ geodesic currents on a hyperbolic surface Σ.
- Define $\Psi: \mathcal{C} \times H^{1}\left(\Gamma, \mathbf{R}^{2,1}\right)$ which is continuous.
- Result, if Ψ is positive then Γ acts properly on E.

