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Deformations

• Reprsentations of a group G .
• φ is a representation, φ : G → GL(k)
• ψ is an affine representation,
ψ : G → Isom(En,m) = SO(n,m) n Rn,m

• Linear map
• Projection: L : Aff(En,m)→ GL(n,m)
• L(A, a) = A
• Set Γ = φ(G )

• Cocycle map (not a homomorphism)
• u : Γ→ Rn,m

• u(A) = a where A and a are as a above.

• Deformation of Γ is a continuous Φt : I× G → GL(n,m) such
that Φt are all representations of G and Φ0(G ) = Γ.
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Affine Deformations

• An affine deformation of Γ is a map ϕ : Γ→ Isom(En,m) such
that L ◦ ϕ = I
• Defined by cocycle, u : Γ→ Rn,m

• ϕ(A) = (A, u(A)).
• u(AB) = u(A) + Au(B)
• If ϕ1 and ϕ2 are conjugate by a translation v then
δv = u1(A)− u2(B) = v − A(v) is a coboundary

• Cohomology class of deformations
• Z(Γ,Rn,m) is all affine deformations of Γ, that is the set of all

cocycles.
• B(Γ) is the seet of all coboundaries.
• H1(Γ,Rn,m) describe translationally conjugate affine

deformations of Γ
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Three dimensions with rk(Γ) = 2

• First: Linear part
• Suppose Γ = 〈A,B〉 = 〈A,B,C |ABC = Id〉
• Γ is determined by (tr(A), tr(B), tr(C )).

• Up to conjugation.
• Two of three generators can be mutliplied by −1.
• Nielsen moves, e.g. (A,B,C) 7→ (A,B−1,BA−1).

• Affine deformation ϕ of a fixed Γ = 〈A,B,C |ABC = Id〉
• A = ϕ(A),B = ϕ(B), C = ϕ(C )
• Affine deformation defined by (α(A), α(B), α(C))

• Up to translational conjugacy.
• H1(Γ,R2,1) is 3-dimensional.
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Three dimensions with rk(Γ) = 2

• Proper deformations of a group Γ, P(Γ)
• Projectiveness

• (A, ka) · (B, kb) = (AB, ka + A(kb)) = (AB, k(a + Ab))
• α(A, kz) = kα(A, a)
• Affine deformation of Γ defined by cocycle u is proper if and

only if affine deformation of Γ defined by ku is proper.

• Opposite sign lemma implies that P(Γ) lie inside (+,+,+)
and the (−,−,−).
• Enough to consider intersection of P(Γ) with x + y + z = 1.
• Plane defined by α(A) = 0 lies outside P(Γ) .
• Enough to consider 0-planse for (A, a) where A ∈ Γ is

primitive.
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Proper Deformations of Three-Holed Spheres

• H2/Γ is a three holed sphere,
• Γ = 〈A,B,C 〉, and A,B,C correspond to boundary closed

geodesics.
• A deformation of Γ is proper if and only if α(A), α(B), α(C)

are all the same sign.

A B
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Proper Deformations of Two-holed Cross Surface

• H2/Γ is a two-holed cross surface (unorianted).

• For proper deformation φ(Γ), E/φ(Γ) is orientable.

• P(Γ) is four-sided.

A X
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Proper Deformations of One-holed Klein Bottle

• H2/Γ is a one-holed Klein bottle.

• P(Γ) has an infinite number of sides.

XA
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Proper Deformations of One-holed Torus

• H2/Γ is a one-holed torus.

• P(Γ) has an infinite number of sides.

B
A
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A Lie group and its Lie algebra

• SL(2,R) ∼= SO(2, 1)
• 2× 2 real matrices with determinant 1.
• Lie Group

• sl(2,R)
• 2× 2 real matrices with trace 0.
• Lie algebra, tangent space to SL(2,R) at I.
• Linear structure.

• Killing form (multiple): B(u, v) = 1
2
tr(uv)

• e1 =

[
1 0
0 −1

]
, e2 =

[
0 1
1 0

]
, e3 =

[
0 1
−1 0

]
• R2,1 ∼= sl(2,R), where (a, b, c) 7→ ae1 + be2 + ce3
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Another view of the Margulis invariant

• SL(2,R) 7→ sl(2,R)
• gl(2,R)

• The set of 2× 2 real matrices.
• SL(2,R) ↪→ gl(2,R), where A 7→ A.

• Π : gl(2,R)→ sl(2,R), where Π(A) = A− tr(A)
2 I

• Calculation for hyperbolic diagonal A = ±
[
k

k−1

]
• Π(A) = ± 1

2

[
k − k−1

k−1 − k

]
•
√

B(Π(A),Π(A)) =
√

(tr(A)2 − 4)/4

• 2σtr(A)√
tr(A)2−4

Π(A) =

[
−1

1

]
= A0, where σ = tr(sign(A))

• α(A) = tr(u(A)A)·σ√
tr(A)2−4

• From: B(A(O),A0) = tr

(
u(A)

σ tr(A)(A− tr(A)
2 I)√

tr(A)2−4

)
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Translation Length

• Let µt : G → SL(2,R) be a smooth deformation where
derivative at A ∈ G is u(A)
• τA := |tr

(
A
(
I +

(
tu(A) + O(t2)

)))
|

• dτA
dt (0) = σtr (Au(A))

• Positve α corresponds to infinitesimal lengthening of a closed
geodesic on the underlying surface.

• Results and Extensions
• Goldman-Labourie-Margulis “extend α to a continuous

function.”
• C(Σ) geodesic currents on a hyperbolic surface Σ.
• Define Ψ : C × H1(Γ,R2,1) which is continuous.
• Result, if Ψ is positive then Γ acts properly on E.
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