◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lorentzian Geometry II

Todd A. Drumm (Howard Univeristy, USA)

ICTP

25 August 2015 Trieste, Italy

Strip Deformations

Deformations

- Reprsentations of a group G.
 - ϕ is a representation, $\phi: G \to GL(k)$
 - ψ is an *affine representation*,
 - $\psi: G \to \mathsf{Isom}(\mathsf{E}^{n,m}) = \mathsf{SO}(n,m) \ltimes \mathbf{R}^{n,m}$
- Linear map
 - Projection: \mathbb{L} : Aff $(\mathsf{E}^{n,m}) \to \mathsf{GL}(n,m)$
 - L(A, a) = A
 - Set Γ = φ(G)
- Cocycle map (not a homomorphism)
 - $u: \Gamma \to \mathbf{R}^{n,m}$
 - u(A) = a where A and a are as a above.
- Deformation of Γ is a continuous Φ_t : I × G → GL(n, m) such that Φ_t are all representations of G and Φ₀(G) = Γ.

Affine Deformations

- An affine deformation of Γ is a map φ : Γ → lsom(E^{n,m}) such that L ∘ φ = I
 - Defined by *cocycle*, $u: \Gamma \rightarrow \mathbf{R}^{n,m}$
 - $\varphi(A) = (A, u(A)).$
 - u(AB) = u(A) + Au(B)
 - If φ_1 and φ_2 are conjugate by a translation v then
 - $\delta_v = u_1(A) u_2(B) = v A(v)$ is a coboundary
 - Cohomology class of deformations
 - Z(Γ, R^{n,m}) is all affine deformations of Γ, that is the set of all cocycles.
 - $B(\Gamma)$ is the seet of all coboundaries.
 - *H*¹(Γ, **R**^{n,m}) describe translationally conjugate affine deformations of Γ

Three dimensions with $rk(\Gamma) = 2$

- First: Linear part
 - Suppose $\Gamma = \langle A, B \rangle = \langle A, B, C | ABC = Id \rangle$
 - Γ is determined by (tr(A), tr(B), tr(C)).
 - Up to conjugation.
 - Two of three generators can be mutliplied by -1.
 - Nielsen moves, e.g. $(A, B, C) \mapsto (A, B^{-1}, BA^{-1})$.
- Affine deformation φ of a fixed $\Gamma = \langle A, B, C | ABC = Id \rangle$

•
$$\mathcal{A} = \varphi(\mathcal{A}), \mathcal{B} = \varphi(\mathcal{B}), \mathcal{C} = \varphi(\mathcal{C})$$

- Affine deformation defined by $(\alpha(\mathcal{A}), \alpha(\mathcal{B}), \alpha(\mathcal{C}))$
 - Up to translational conjugacy.
 - *H*¹(Γ, **R**^{2,1}) is 3-dimensional.

Three dimensions with $rk(\Gamma) = 2$

- Proper deformations of a group Γ , $\mathcal{P}(\Gamma)$
 - Projectiveness
 - $(A, ka) \cdot (B, kb) = (AB, ka + A(kb)) = (AB, k(a + Ab))$
 - $\alpha(A, kz) = k\alpha(A, a)$
 - Affine deformation of Γ defined by cocycle *u* is proper if and only if affine deformation of Γ defined by *ku* is proper.
 - Opposite sign lemma implies that $\mathcal{P}(\Gamma)$ lie inside (+,+,+) and the (-,-,-).
 - Enough to consider intersection of $\mathcal{P}(\Gamma)$ with x + y + z = 1.
 - Plane defined by α(A) = 0 lies outside P(Γ).
 - Enough to consider 0-planse for (A, a) where A ∈ Γ is *primitive*.

Proper Deformations of Three-Holed Spheres

- H^2/Γ is a three holed sphere,
- Γ = (A, B, C), and A, B, C correspond to boundary closed geodesics.
- A deformation of Γ is proper if and only if α(A), α(B), α(C) are all the same sign.

Proper Deformations of Two-holed Cross Surface

- H^2/Γ is a two-holed cross surface (unorianted).
- For proper deformation $\phi(\Gamma)$, $E/\phi(\Gamma)$ is orientable.
- $\mathcal{P}(\Gamma)$ is four-sided.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proper Deformations of One-holed Klein Bottle

- H^2/Γ is a one-holed Klein bottle.
- $\mathcal{P}(\Gamma)$ has an infinite number of sides.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proper Deformations of One-holed Torus

- H^2/Γ is a one-holed torus.
- $\mathcal{P}(\Gamma)$ has an infinite number of sides.

A Lie group and its Lie algebra

- $SL(2, \mathbf{R}) \cong SO(2, 1)$
 - 2×2 real matrices with determinant 1.
 - Lie Group
- sl(2, **R**)
 - 2×2 real matrices with trace 0.
 - Lie algebra, tangent space to $SL(2, \mathbf{R})$ at \mathbb{I} .
 - Linear structure.
 - Killing form (multiple): $\mathbb{B}(\mathfrak{u}, \mathfrak{v}) = \frac{1}{2} tr(\mathfrak{uv})$

•
$$\mathfrak{e}_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
, $\mathfrak{e}_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\mathfrak{e}_3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

•
$$\mathbf{R}^{2,1} \cong \mathfrak{sl}(2,\mathbf{R})$$
, where $(a,b,c) \mapsto a\mathfrak{e}_1 + b\mathfrak{e}_2 + c\mathfrak{e}_3$

Another view of the Margulis invariant

•
$$SL(2, \mathbf{R}) \mapsto \mathfrak{sl}(2, \mathbf{R})$$

- gl(2, R)
 - The set of 2 × 2 real matrices.
 - $SL(2, \mathbf{R}) \hookrightarrow \mathfrak{gl}(2, \mathbf{R})$, where $A \mapsto A$.

•
$$\Pi : \mathfrak{gl}(2, \mathbf{R}) \to \mathfrak{sl}(2, \mathbf{R})$$
, where $\Pi(A) = A - \frac{\operatorname{tr}(A)}{2}\mathbb{I}$

• Calculation for hyperbolic diagonal $A = \pm \begin{vmatrix} k \\ k \end{vmatrix}$

•
$$\Pi(A) = \pm \frac{1}{2} \begin{bmatrix} k - k^{-1} \\ k^{-1} - k \end{bmatrix}$$

•
$$\sqrt{\mathbb{B}(\Pi(A), \Pi(A))} = \sqrt{(\operatorname{tr}(A)^2 - 4)/4}$$

•
$$\frac{2 \sigma \operatorname{tr}(A)}{\sqrt{\operatorname{tr}(A)^2 - 4}} \Pi(A) = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = A^0, \text{ where } \sigma = \operatorname{tr}(\operatorname{sign}(A))$$

•
$$\alpha(\mathcal{A}) = \frac{\operatorname{tr}(u(\mathcal{A})\mathcal{A})\cdot\sigma}{\sqrt{\operatorname{tr}(\mathcal{A})^2 - 4}}$$

• From: $\mathbb{B}(\mathcal{A}(O), \mathcal{A}^0) = \operatorname{tr}\left(u(\mathcal{A})\frac{\sigma\operatorname{tr}(\mathcal{A})\left(\mathcal{A} - \frac{\operatorname{tr}(\mathcal{A})}{2}\mathbb{I}\right)}{\sqrt{\operatorname{tr}(\mathcal{A})^2 - 4}}\right)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strip Deformations

Translation Length

- Let $\mu_t : G \to SL(2, \mathbf{R})$ be a smooth deformation where derivative at $A \in G$ is u(A)
 - $\tau_A := |\operatorname{tr} \left(A \left(\mathbb{I} + \left(tu(A) + O(t^2) \right) \right) \right) |$
 - $\frac{d\tau_A}{dt}(0) = \sigma \operatorname{tr}(Au(A))$
 - Positve α corresponds to infinitesimal lengthening of a closed geodesic on the underlying surface.
- Results and Extensions
 - Goldman-Labourie-Margulis "extend α to a continuous function."
 - C(Σ) geodesic currents on a hyperbolic surface Σ.
 - Define $\Psi : \mathcal{C} \times H^1(\Gamma, \mathbf{R}^{2,1})$ which is continuous.
 - Result, if Ψ is positive then Γ acts properly on E.