Conjugation classes of pairs in $\operatorname{SL}(4, \mathbb{C})$ and $\mathrm{SU}(3,1)$

Krishnendu Gongopadhyay
(joint work with Sean Lawton)

September 1, 2015

Theorem of Fricke and Vogt

- There is a long tradition of work whose goal is to classify pairs of elements in $\operatorname{SL}(2, \mathbb{R})$ or $\operatorname{SL}(2, \mathbb{C})$ in connection with Fuchsian and Kleinian groups.
- There is a long tradition of work whose goal is to classify pairs of elements in $\operatorname{SL}(2, \mathbb{R})$ or $\operatorname{SL}(2, \mathbb{C})$ in connection with Fuchsian and Kleinian groups.
- Theorem: (Fricke-Vogt) A non-elementary two-generator free subgroup of $\operatorname{SL}(2, \mathbb{C})$ is determined up to conjugation by the traces of the generators and their product.

Theorem of Fricke and Vogt

- There is a long tradition of work whose goal is to classify pairs of elements in $\operatorname{SL}(2, \mathbb{R})$ or $\mathrm{SL}(2, \mathbb{C})$ in connection with Fuchsian and Kleinian groups.
- Theorem: (Fricke-Vogt) A non-elementary two-generator free subgroup of $\mathrm{SL}(2, \mathbb{C})$ is determined up to conjugation by the traces of the generators and their product.

Actually it holds more generally for any 'polystable' pairs.

Theorem of Fricke and Vogt

- There is a long tradition of work whose goal is to classify pairs of elements in $\operatorname{SL}(2, \mathbb{R})$ or $\operatorname{SL}(2, \mathbb{C})$ in connection with Fuchsian and Kleinian groups.
- Theorem: (Fricke-Vogt) A non-elementary two-generator free subgroup of $\operatorname{SL}(2, \mathbb{C})$ is determined up to conjugation by the traces of the generators and their product.

Actually it holds more generally for any 'polystable' pairs.

- This result is increamental in the development of Teichmüller theory. In particular, it gives the Fenchel-Nielsen coordinates on the Teichmüller space.
- One can ask for generalization of Fricke-Vogt for other groups!
- One can ask for generalization of Fricke-Vogt for other groups!
- The question can be reformulated as finding the minimal generating set for the character variety of F_{2} into a group G of your choice!
- One can ask for generalization of Fricke-Vogt for other groups!
- The question can be reformulated as finding the minimal generating set for the character variety of F_{2} into a group G of your choice!
- Even for $\operatorname{SL}(n, \mathbb{C})$, for $n \geq 3$, the picture is pretty complicated but some investigations have been done in recent time, mostly by Florentino, Lawton, Sikora, Drensky.....
- One can ask for generalization of Fricke-Vogt for other groups!
- The question can be reformulated as finding the minimal generating set for the character variety of F_{2} into a group G of your choice!
- Even for $\operatorname{SL}(n, \mathbb{C})$, for $n \geq 3$, the picture is pretty complicated but some investigations have been done in recent time, mostly by Florentino, Lawton, Sikora, Drensky.....
- We shall address this question for $\operatorname{SL}(4, \mathbb{C})$ and $\operatorname{SU}(3,1)$ in this talk.
- One can ask for generalization of Fricke-Vogt for other groups!
- The question can be reformulated as finding the minimal generating set for the character variety of F_{2} into a group G of your choice!
- Even for $\operatorname{SL}(n, \mathbb{C})$, for $n \geq 3$, the picture is pretty complicated but some investigations have been done in recent time, mostly by Florentino, Lawton, Sikora, Drensky.....
- We shall address this question for $\operatorname{SL}(4, \mathbb{C})$ and $\operatorname{SU}(3,1)$ in this talk.
- In geometric terms, answering this question will give some idea about the topology of the complex hyperbolic quasi-Fuchsian spaces in dimension three.

Complex hyperbolic space

Complex hyperbolic space

- Let $V=\mathbb{C}^{n, 1}$ be the complex vector space \mathbb{C}^{n} equipped with the Hermitian form of signature $(\mathrm{n}, 1)$ given by

$$
\langle\mathbf{z}, \mathbf{w}\rangle=-z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}+z_{3} \bar{w}_{3}+\cdots++z_{n+1} \bar{w}_{n+1} .
$$

Complex hyperbolic space

- Let $V=\mathbb{C}^{n, 1}$ be the complex vector space \mathbb{C}^{n} equipped with the Hermitian form of signature $(\mathrm{n}, 1)$ given by

$$
\langle\mathbf{z}, \mathbf{w}\rangle=-z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}+z_{3} \bar{w}_{3}+\cdots++z_{n+1} \bar{w}_{n+1} .
$$

- We consider the following subspaces of $\mathbb{C}^{n, 1}$:

$$
\begin{gathered}
V_{-}=\left\{\mathbf{z} \in \mathbb{C}^{n, 1}:\langle\mathbf{z}, \mathbf{z}\rangle<0\right\}, \mathbb{V}_{+}=\left\{\mathbf{z} \in \mathbb{C}^{n, 1}:\langle\mathbf{z}, \mathbf{z}\rangle>0\right\} \\
V_{0}=\left\{\mathbf{z}-\{\mathbf{0}\} \in \mathbb{C}^{n, 1}:\langle\mathbf{z}, \mathbf{z}\rangle=0\right\}
\end{gathered}
$$

Complex hyperbolic space

- Let $V=\mathbb{C}^{n, 1}$ be the complex vector space \mathbb{C}^{n} equipped with the Hermitian form of signature $(\mathrm{n}, 1)$ given by

$$
\langle\mathbf{z}, \mathbf{w}\rangle=-z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}+z_{3} \bar{w}_{3}+\cdots++z_{n+1} \bar{w}_{n+1}
$$

- We consider the following subspaces of $\mathbb{C}^{n, 1}$:

$$
\begin{gathered}
V_{-}=\left\{\mathbf{z} \in \mathbb{C}^{n, 1}:\langle\mathbf{z}, \mathbf{z}\rangle<0\right\}, \mathbb{V}_{+}=\left\{\mathbf{z} \in \mathbb{C}^{n, 1}:\langle\mathbf{z}, \mathbf{z}\rangle>0\right\} \\
V_{0}=\left\{\mathbf{z}-\{\mathbf{0}\} \in \mathbb{C}^{n, 1}:\langle\mathbf{z}, \mathbf{z}\rangle=0\right\}
\end{gathered}
$$

- The complex hyperbolic space $\mathbf{H}_{\mathbb{C}}^{n}$ is the projectivization of \mathbb{V}_{-}. It can be identified with the disk $\mathbb{D}^{2 n}$. The ideal boundary is $\mathbb{S}^{2 n-1}$.

The group $\operatorname{SU}(\mathrm{n}, 1)$

The isometry group of $\langle.,$.$\rangle acts as the isometry group of \mathbf{H}_{\mathbb{C}}^{n}$.

The isometry group of $\langle.,$.$\rangle acts as the isometry group of \mathbf{H}_{\mathbb{C}}^{n}$.
(1) An isometry is elliptic if it fixes at least one point on $\mathbf{H}_{\mathbb{C}}^{n}$.
(2) An isometry is loxodromic or hyperbolic if it fixes exactly two points of $\partial \mathbf{H}_{\mathbb{C}}^{n}$.
(3) An isometry is parabolic if it fixes exactly one point of $\partial \mathbf{H}_{\mathbb{C}}^{n}$.

The isometry group of $\langle.,$.$\rangle acts as the isometry group of \mathbf{H}_{\mathbb{C}}^{n}$.
(1) An isometry is elliptic if it fixes at least one point on $\mathbf{H}_{\mathbb{C}}^{n}$.
(2) An isometry is loxodromic or hyperbolic if it fixes exactly two points of $\partial \mathbf{H}_{\mathbb{C}}^{n}$.
(3) An isometry is parabolic if it fixes exactly one point of $\partial \mathbf{H}_{\mathbb{C}}^{n}$.

Goldman classified these isometries algebraically in $\operatorname{SU}(2,1)$. In a joint work with Parker and Parsad, we have generalized Goldman's result for $\operatorname{SU}(p, q)$. In particular, this gives a complete algebraic classification for $\mathrm{SU}(3,1)$, the group of our interest in this talk!

Character Varieties

- Let $\Gamma=\left\langle\gamma_{1}, \ldots, \gamma_{r} \mid R\right\rangle$ be a finitely generated discrete group (with relations R) and G a connected Lie group.

Character Varieties

- Let $\Gamma=\left\langle\gamma_{1}, \ldots, \gamma_{r} \mid R\right\rangle$ be a finitely generated discrete group (with relations R) and G a connected Lie group.
- The set of homomorphisms $\operatorname{Hom}(\Gamma, G)$ naturally sits inside G^{r} via the evaluation map: $\rho \mapsto\left(\rho\left(\gamma_{1}\right), \ldots, \rho\left(\gamma_{r}\right)\right)$.

Character Varieties

- Let $\Gamma=\left\langle\gamma_{1}, \ldots, \gamma_{r} \mid R\right\rangle$ be a finitely generated discrete group (with relations R) and G a connected Lie group.
- The set of homomorphisms $\operatorname{Hom}(\Gamma, G)$ naturally sits inside G^{r} via the evaluation map: $\rho \mapsto\left(\rho\left(\gamma_{1}\right), \ldots, \rho\left(\gamma_{r}\right)\right)$. Therefore, $\operatorname{Hom}(\Gamma, G)$ inherits the subspace topology.

Character Varieties

- Let $\Gamma=\left\langle\gamma_{1}, \ldots, \gamma_{r} \mid R\right\rangle$ be a finitely generated discrete group (with relations R) and G a connected Lie group.
- The set of homomorphisms $\operatorname{Hom}(\Gamma, G)$ naturally sits inside G^{r} via the evaluation map: $\rho \mapsto\left(\rho\left(\gamma_{1}\right), \ldots, \rho\left(\gamma_{r}\right)\right)$. Therefore, $\operatorname{Hom}(\Gamma, G)$ inherits the subspace topology.
- Define $\operatorname{Hom}(\Gamma, G)^{*}$ to be all ρ in $\operatorname{Hom}(\Gamma, G)$ such that the conjugation orbit of ρ is closed. Such points are called polystable.

Character Varieties

- Let $\Gamma=\left\langle\gamma_{1}, \ldots, \gamma_{r} \mid R\right\rangle$ be a finitely generated discrete group (with relations R) and G a connected Lie group.
- The set of homomorphisms $\operatorname{Hom}(\Gamma, G)$ naturally sits inside G^{r} via the evaluation map: $\rho \mapsto\left(\rho\left(\gamma_{1}\right), \ldots, \rho\left(\gamma_{r}\right)\right)$. Therefore, $\operatorname{Hom}(\Gamma, G)$ inherits the subspace topology.
- Define $\operatorname{Hom}(\Gamma, G)^{*}$ to be all ρ in $\operatorname{Hom}(\Gamma, G)$ such that the conjugation orbit of ρ is closed. Such points are called polystable.
- The G-character variety of Γ is then the conjugation orbit space $\mathfrak{X}(\Gamma, G):=\operatorname{Hom}(\Gamma, G)^{*} / G$.

Character Varieties

- Let $\Gamma=\left\langle\gamma_{1}, \ldots, \gamma_{r} \mid R\right\rangle$ be a finitely generated discrete group (with relations R) and G a connected Lie group.
- The set of homomorphisms $\operatorname{Hom}(\Gamma, G)$ naturally sits inside G^{r} via the evaluation map: $\rho \mapsto\left(\rho\left(\gamma_{1}\right), \ldots, \rho\left(\gamma_{r}\right)\right)$. Therefore, $\operatorname{Hom}(\Gamma, G)$ inherits the subspace topology.
- Define $\operatorname{Hom}(\Gamma, G)^{*}$ to be all ρ in $\operatorname{Hom}(\Gamma, G)$ such that the conjugation orbit of ρ is closed. Such points are called polystable.
- The G-character variety of Γ is then the conjugation orbit space $\mathfrak{X}(\Gamma, G):=\operatorname{Hom}(\Gamma, G)^{*} / G$.
- Our interest: $\Gamma=F_{2}, G=\operatorname{SL}(4, \mathbb{C})$ and $\operatorname{SU}(3,1)$

Algebraic Topology of $\mathfrak{X}(\Gamma, G)$

- When G is a complex reductive affine algebraic group, $\operatorname{Hom}(\Gamma, G)$ is an affine variety:

Algebraic Topology of $\mathfrak{X}(\Gamma, G)$

- When G is a complex reductive affine algebraic group, $\operatorname{Hom}(\Gamma, G)$ is an affine variety: cut out of the product variety G^{r} by the words in R.

Algebraic Topology of $\mathfrak{X}(\Gamma, G)$

- When G is a complex reductive affine algebraic group, $\operatorname{Hom}(\Gamma, G)$ is an affine variety: cut out of the product variety G^{r} by the words in R.
- Theorem: [Florentino-Lawton], [Luna] $\mathfrak{X}(\Gamma, G)$ is homeomorphic to the geometric points (with the Euclidean topology on an affine variety) of the Geometric Invariant Theory (GIT) quotient $\operatorname{Hom}(\Gamma, G) / / G:=\operatorname{Spec}\left(\mathbb{C}[\operatorname{Hom}(\Gamma, G)]^{G}\right)$, where $\mathbb{C}[\operatorname{Hom}(\Gamma, G)]^{G}$ is the ring of G-invariant polynomials in the coordinate ring $\mathbb{C}[\operatorname{Hom}(\Gamma, G)]$.

Algebraic Topology of $\mathfrak{X}(\Gamma, G)$

- When G is a complex reductive affine algebraic group, $\operatorname{Hom}(\Gamma, G)$ is an affine variety: cut out of the product variety G^{r} by the words in R.
- Theorem: [Florentino-Lawton], [Luna] $\mathfrak{X}(\Gamma, G)$ is homeomorphic to the geometric points (with the Euclidean topology on an affine variety) of the Geometric Invariant Theory (GIT) quotient $\operatorname{Hom}(\Gamma, G) / / G:=\operatorname{Spec}\left(\mathbb{C}[\operatorname{Hom}(\Gamma, G)]^{G}\right)$, where $\mathbb{C}[\operatorname{Hom}(\Gamma, G)]^{G}$ is the ring of G-invariant polynomials in the coordinate ring $\mathbb{C}[\operatorname{Hom}(\Gamma, G)]$.
- (Florentino-Lawton-Ramras) The GIT quotient with this topology is homotopic to the non-Hausdorff quotient space $\operatorname{Hom}(\Gamma, G) / G$.

Ring of Invariants

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs

Ring of Invariants

Let F_{r}^{+}be the free non-commutative monoid generated by symbols $\left\{x_{1}, \ldots, x_{r}\right\}$. Let M_{r}^{+}be the monoid generated by $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$, where $\mathbf{x}_{k}=\left(x_{i j}^{k}\right)$ are matrices in $r n^{2}$ indeterminates.

Ring of Invariants

Let F_{r}^{+}be the free non-commutative monoid generated by symbols $\left\{x_{1}, \ldots, x_{r}\right\}$. Let M_{r}^{+}be the monoid generated by $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$, where $\mathbf{x}_{k}=\left(x_{i j}^{k}\right)$ are matrices in $r n^{2}$ indeterminates.

There is a surjection $F_{r}^{+} \rightarrow M_{r}^{+}$, defined by mapping $x_{i} \mapsto \mathbf{x}_{i}$. Let $\mathbf{w} \in M_{r}^{+}$be the image of $w \in F_{r}^{+}$under this map.

Ring of Invariants

Let F_{r}^{+}be the free non-commutative monoid generated by symbols $\left\{x_{1}, \ldots, x_{r}\right\}$. Let M_{r}^{+}be the monoid generated by $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$, where $\mathbf{x}_{k}=\left(x_{i j}^{k}\right)$ are matrices in $r n^{2}$ indeterminates.

There is a surjection $F_{r}^{+} \rightarrow M_{r}^{+}$, defined by mapping $x_{i} \mapsto \mathbf{x}_{i}$. Let $\mathbf{w} \in M_{r}^{+}$be the image of $w \in F_{r}^{+}$under this map.

Let $|\cdot|$ be the function that takes a cyclically reduced word in F_{r} to its word length.

Ring of Invariants

Let F_{r}^{+}be the free non-commutative monoid generated by symbols $\left\{x_{1}, \ldots, x_{r}\right\}$. Let M_{r}^{+}be the monoid generated by $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$, where $\mathbf{x}_{k}=\left(x_{i j}^{k}\right)$ are matrices in $r n^{2}$ indeterminates.

There is a surjection $F_{r}^{+} \rightarrow M_{r}^{+}$, defined by mapping $x_{i} \mapsto \mathbf{x}_{i}$. Let $\mathbf{w} \in M_{r}^{+}$be the image of $w \in F_{r}^{+}$under this map.
Let $|\cdot|$ be the function that takes a cyclically reduced word in F_{r} to its word length.
(Procesi) The ring of invariants $\mathbb{C}\left[\mathfrak{g l}(n, \mathbb{C})^{r}\right]^{\mathrm{SL}(\mathrm{n}, \mathbb{C})}$ is generated by

$$
\begin{equation*}
\left\{\operatorname{tr}(\mathbf{w})\left|\mathrm{w} \in \mathrm{~F}_{\mathrm{r}}^{+},|\mathrm{w}| \leq \mathrm{n}^{2}\right\}\right. \tag{1}
\end{equation*}
$$

The coordinate ring $\mathbb{C}\left[\mathfrak{X}\left(F_{r}, \operatorname{SL}(\mathrm{n}, \mathbb{C})\right)\right]$ is equal to $\mathbb{C}\left[\operatorname{SL}(\mathrm{n}, \mathbb{C})^{\mathrm{r}}\right]^{\mathrm{SL}(\mathrm{n}, \mathbb{C})}$.

The coordinate ring $\mathbb{C}\left[\mathfrak{X}\left(F_{r}, \mathrm{SL}(\mathrm{n}, \mathbb{C})\right)\right]$ is equal to $\mathbb{C}\left[\operatorname{SL}(\mathrm{n}, \mathbb{C})^{\mathrm{r}}\right]^{\mathrm{SL}(\mathrm{n}, \mathbb{C})}$.

Since the determinant is conjugation invariant $\mathbb{C}\left[\mathrm{SL}(\mathrm{n}, \mathbb{C})^{\mathrm{r}}\right]^{\mathrm{SL}(\mathrm{n}, \mathbb{C})} \cong$

The coordinate ring $\mathbb{C}\left[\mathfrak{X}\left(F_{r}, \mathrm{SL}(\mathrm{n}, \mathbb{C})\right)\right]$ is equal to $\mathbb{C}\left[\operatorname{SL}(\mathrm{n}, \mathbb{C})^{\mathrm{r}}\right]^{\mathrm{SL}(\mathrm{n}, \mathbb{C})}$.

Since the determinant is conjugation invariant $\mathbb{C}\left[\mathrm{SL}(\mathrm{n}, \mathbb{C})^{\mathrm{r}}\right]^{\mathrm{SL}(\mathrm{n}, \mathbb{C})} \cong$

$$
\left(\mathbb{C}\left[\mathfrak{g l}(n, \mathbb{C})^{r}\right] / \Delta\right)^{\mathrm{SL}(\mathrm{n}, \mathbb{C})}=\mathbb{C}\left[\mathfrak{g l}(n, \mathbb{C})^{r}\right]^{\mathrm{SL}(\mathrm{n}, \mathbb{C})} / \Delta
$$

where Δ is the ideal generated by the r polynomials $\operatorname{det}\left(\mathbf{x}_{k}\right)-1$.

The coordinate ring $\mathbb{C}\left[\mathfrak{X}\left(F_{r}, \mathrm{SL}(\mathrm{n}, \mathbb{C})\right)\right]$ is equal to $\mathbb{C}\left[\operatorname{SL}(\mathrm{n}, \mathbb{C})^{\mathrm{r}}\right]^{\mathrm{SL}(\mathrm{n}, \mathbb{C})}$.

Since the determinant is conjugation invariant $\mathbb{C}\left[\mathrm{SL}(\mathrm{n}, \mathbb{C})^{\mathrm{r}}\right]^{\mathrm{SL}(\mathrm{n}, \mathbb{C})} \cong$

$$
\left(\mathbb{C}\left[\mathfrak{g l}(n, \mathbb{C})^{r}\right] / \Delta\right)^{\mathrm{SL}(\mathrm{n}, \mathbb{C})}=\mathbb{C}\left[\mathfrak{g l}(n, \mathbb{C})^{r}\right]^{\mathrm{SL}(\mathrm{n}, \mathbb{C})} / \Delta
$$

where Δ is the ideal generated by the r polynomials $\operatorname{det}\left(\mathbf{x}_{k}\right)-1$.
Since the characteristic polynomial allows one to write the determinant as a polynomial in traces of words, $\mathbb{C}\left[\mathfrak{X}\left(F_{r}, \mathrm{SL}(\mathrm{n}, \mathbb{C})\right)\right]$ is generated by $\left\{\operatorname{tr}(\mathbf{w})\left|\mathrm{w} \in \mathrm{F}_{\mathrm{r}}^{+},|\mathrm{w}| \leq \mathrm{n}^{2}\right\}\right.$ as well.

Some Notations

$$
\begin{aligned}
& \mathbf{x}_{k}^{*}=(-1)^{i+j} \operatorname{Cof}_{j i}\left(\mathbf{x}_{k}\right) \text {. Let } M_{r}^{*} \text { be the monoid generated by } \\
& \left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\} \text { and }\left\{\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \ldots, \mathbf{x}_{r}^{*}\right\} .
\end{aligned}
$$

Some Notations

$\mathbf{x}_{k}^{*}=(-1)^{i+j} \operatorname{Cof}_{j i}\left(\mathbf{x}_{k}\right)$. Let M_{r}^{*} be the monoid generated by
$\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ and $\left\{\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \ldots, \mathbf{x}_{r}^{*}\right\}$.
Let N_{r} be the normal sub-monoid generated by
$\left\{\operatorname{det}\left(\mathbf{x}_{k}\right) \mathbf{I} \mid 1 \leq k \leq r\right\}$.

Some Notations

> $\mathbf{x}_{k}^{*}=(-1)^{i+j} \operatorname{Cof}_{j i}\left(\mathbf{x}_{k}\right)$. Let M_{r}^{*} be the monoid generated by $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ and $\left\{\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \ldots, \mathbf{x}_{r}^{*}\right\}$.

> Let N_{r} be the normal sub-monoid generated by $\left\{\operatorname{det}\left(\mathbf{x}_{k}\right) \boldsymbol{I} \mid 1 \leq k \leq r\right\}$.

> Define $M_{r}=M_{r}^{*} / N_{r}$.
$\mathbf{x}_{k}^{*}=(-1)^{i+j} \operatorname{Cof}_{j i}\left(\mathbf{x}_{k}\right)$. Let M_{r}^{*} be the monoid generated by $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ and $\left\{\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \ldots, \mathbf{x}_{r}^{*}\right\}$.

Let N_{r} be the normal sub-monoid generated by $\left\{\operatorname{det}\left(\mathbf{x}_{k}\right) \mid 1 \leq k \leq r\right\}$.
Define $M_{r}=M_{r}^{*} / N_{r}$.
Now let $\mathbb{C} M_{r}$ be the group algebra defined over \mathbb{C} with respect to matrix addition and scalar multiplication in M_{r}. Likewise, let $\mathbb{C} M_{r}^{*}$ be the semi-group algebra of the monoid M_{r}^{*}.

A Non-commutative Diagram

The following diagram (from Lawton's thesis) forms a bridge between the non-commutative algebra $\mathbb{C} M_{r}$ and the moduli space $\mathfrak{X}\left(F_{r}, \mathrm{SL}(\mathrm{n}, \mathbb{C})\right)$, built in the language of free groups:

This relationship has been exploited to obtain many geometric results in the case $n=3$.

A Non-commutative Diagram

The following diagram (from Lawton's thesis) forms a bridge between the non-commutative algebra $\mathbb{C} M_{r}$ and the moduli space $\mathfrak{X}\left(F_{r}, \mathrm{SL}(\mathrm{n}, \mathbb{C})\right)$, built in the language of free groups:

This relationship has been exploited to obtain many geometric results in the case $n=3$. In particular, the relationship to the non-commutative algebra was used by Lawton to completely describe the coordinate ring of $\mathfrak{X}\left(F_{2}, \mathrm{SL}(3, \mathbb{C})\right)$.

$\mathfrak{X}\left(F_{2}, \mathrm{SL}(3, \mathbb{C})\right)$

(Lawton) $\mathfrak{X}\left(F_{2}, \mathrm{SL}(3, \mathbb{C})\right)$ is generated by:

$$
\begin{aligned}
& \operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y}), \operatorname{tr}\left(\mathbf{x} \mathbf{y}^{-1}\right), \operatorname{tr}\left(\mathbf{x}^{-1}\right), \operatorname{tr}\left(\mathbf{y}^{-1}\right) \\
& \operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{-1}\right), \operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}\right), \operatorname{tr}([\mathbf{x}, \mathbf{y}])
\end{aligned}
$$

where $[\mathbf{x}, \mathbf{y}]=\mathbf{x}^{-1} \mathbf{y}^{-1} \mathbf{x y}$.

$\mathfrak{X}\left(F_{2}, \operatorname{SL}(3, \mathbb{C})\right)$

(Lawton) $\mathfrak{X}\left(F_{2}, \mathrm{SL}(3, \mathbb{C})\right)$ is generated by:

$$
\begin{gathered}
\operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y}), \operatorname{tr}\left(\mathbf{x} \mathbf{y}^{-1}\right), \operatorname{tr}\left(\mathbf{x}^{-1}\right), \operatorname{tr}\left(\mathbf{y}^{-1}\right) \\
\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{-1}\right), \operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}\right), \operatorname{tr}([\mathbf{x}, \mathbf{y}])
\end{gathered}
$$

where $[\mathbf{x}, \mathbf{y}]=\mathbf{x}^{-1} \mathbf{y}^{-1} \mathbf{x y}$.
As a consequence of this result, we have the following for $\operatorname{SU}(2,1)$.
(Will, Wen) $\mathfrak{X}\left(F_{2}, \mathrm{SU}(2,1)\right)$ is generated by:

$$
\operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y}), \operatorname{tr}(\mathbf{x} \mathbf{y}), \operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}\right), \operatorname{tr}([\mathbf{x}, \mathbf{y}])
$$

$\mathfrak{X}\left(F_{2}, \operatorname{SL}(3, \mathbb{C})\right)$

(Lawton) $\mathfrak{X}\left(F_{2}, \mathrm{SL}(3, \mathbb{C})\right)$ is generated by:

$$
\begin{gathered}
\operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y}), \operatorname{tr}\left(\mathbf{x} \mathbf{y}^{-1}\right), \operatorname{tr}\left(\mathbf{x}^{-1}\right), \operatorname{tr}\left(\mathbf{y}^{-1}\right) \\
\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{-1}\right), \operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}\right), \operatorname{tr}([\mathbf{x}, \mathbf{y}])
\end{gathered}
$$

where $[\mathbf{x}, \mathbf{y}]=\mathbf{x}^{-1} \mathbf{y}^{-1} \mathbf{x y}$.
As a consequence of this result, we have the following for $\operatorname{SU}(2,1)$.
(Will, Wen) $\mathfrak{X}\left(F_{2}, \mathrm{SU}(2,1)\right)$ is generated by:

$$
\operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y}), \operatorname{tr}(\mathbf{x} \mathbf{y}), \operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}\right), \operatorname{tr}([\mathbf{x}, \mathbf{y}])
$$

Parker and Platis proved a special case:
(Parker \& Platis) A pair of loxodromic elements in $\mathrm{SU}(2,1)$ is determined up to conjugacy by their traces and a point on the cross ratio variety corrresponding to these elements.

Partial Generalization of Parker-Platis for SU(3, 1)

A pair (A, B) of loxodromics in $\mathrm{SU}(3,1)$ is called non-singular if

Partial Generalization of Parker-Platis for $\operatorname{SU}(3,1)$

A pair (A, B) of loxodromics in $\mathrm{SU}(3,1)$ is called non-singular if
(i) A and B are loxodromics without a common fixed point and the fixed points of A and B do not lie on a common \mathbb{C}^{2}-chain.

Partial Generalization of Parker-Platis for $\operatorname{SU}(3,1)$

A pair (A, B) of loxodromics in $\mathrm{SU}(3,1)$ is called non-singular if
(i) A and B are loxodromics without a common fixed point and the fixed points of A and B do not lie on a common \mathbb{C}^{2}-chain.
(ii) The fixed point set of A is disjoint from at least one of the \mathbb{C}^{2}-chains polar to the positive eigenvectors of B and, the fixed point set of B is disjoint from at least one of the \mathbb{C}^{2}-chains polar to the positive eigenvectors of A.

Partial Generalization of Parker-Platis for $\operatorname{SU}(3,1)$

A pair (A, B) of loxodromics in $\mathrm{SU}(3,1)$ is called non-singular if
(i) A and B are loxodromics without a common fixed point and the fixed points of A and B do not lie on a common \mathbb{C}^{2}-chain.
(ii) The fixed point set of A is disjoint from at least one of the \mathbb{C}^{2}-chains polar to the positive eigenvectors of B and, the fixed point set of B is disjoint from at least one of the \mathbb{C}^{2}-chains polar to the positive eigenvectors of A.
Theorem. (G. - Parsad) Let $\rho: F_{2} \rightarrow \mathrm{SU}(3,1)$ be a representation such that $\rho(m), \rho(n)$ are loxodromic and generate a non-singular subgroup of $\mathrm{SU}(3,1)$. Then for some $i, j \in\{1,2\}$, there exists two non-zero complex parameters α_{i} and β_{j} such that these, along with coefficients of the characteristic polynomials of $\rho(m), \rho(n)$ and a point on the cross-ratio variety, completely determine ρ up to conjugacy.

Here $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are 'cross-ratios' with three null vectors and one positive-type eigenvector.

Generating Set for $\mathfrak{X}\left(F_{2}, \operatorname{SL}(4, \mathbb{C})\right)$

Word Length	Generator
1	$\operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y})$
2	$\operatorname{tr}\left(\mathbf{x}^{2}\right), \operatorname{tr}(\mathbf{x y}), \operatorname{tr}\left(\mathbf{y}^{2}\right)$
3	$\operatorname{tr}\left(\mathbf{x}^{3}\right), \operatorname{tr}\left(\mathbf{x}^{2} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{x y}^{2}\right), \operatorname{tr}\left(\mathbf{y}^{3}\right)$
4	$\operatorname{tr}\left(\mathbf{x}^{4}\right), \operatorname{tr}\left(\mathbf{x}^{3} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{x}^{2} \mathbf{y}^{2}\right), \operatorname{tr}\left(\mathbf{x y}^{3}\right), \operatorname{tr}\left(\mathbf{y}^{4}\right), \operatorname{tr}(\mathbf{x} \mathbf{y} \mathbf{x})$
6	$\operatorname{tr}\left(\left(\mathbf{x}^{2} \mathbf{y}\right)^{2}\right), \operatorname{tr}\left(\left(\mathbf{y}^{2} \mathbf{x}\right)^{2}\right)$

Table: \mathcal{G}_{1}

Generating Set for $\mathfrak{X}\left(F_{2}, \operatorname{SL}(4, \mathbb{C})\right)$

Word Length	Generator
1	$\operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y})$
2	$\operatorname{tr}\left(\mathbf{x}^{2}\right), \operatorname{tr}(\mathbf{x y}), \operatorname{tr}\left(\mathbf{y}^{2}\right)$
3	$\operatorname{tr}\left(\mathbf{x}^{3}\right), \operatorname{tr}\left(\mathbf{x}^{2} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{x y}^{2}\right), \operatorname{tr}\left(\mathbf{y}^{3}\right)$
4	$\operatorname{tr}\left(\mathbf{x}^{4}\right), \operatorname{tr}\left(\mathbf{x}^{3} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{x}^{2} \mathbf{y}^{2}\right), \operatorname{tr}\left(\mathbf{x y}^{3}\right), \operatorname{tr}\left(\mathbf{y}^{4}\right), \operatorname{tr}(\mathbf{x y x} \mathbf{y})$
6	$\operatorname{tr}\left(\left(\mathbf{x}^{2} \mathbf{y}\right)^{2}\right), \operatorname{tr}\left(\left(\mathbf{y}^{2} \mathbf{x}\right)^{2}\right)$

Table: \mathcal{G}_{1}

Word Length	Generator
5	$\operatorname{tr}\left(\mathbf{x}^{3} \mathbf{y}^{2}\right), \operatorname{tr}\left(\mathbf{y}^{3} \mathbf{x}^{2}\right)$
6	$\operatorname{tr}\left(\mathbf{x}^{2} \mathbf{y}^{2} \mathbf{x} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{y}^{\mathbf{2}} \mathbf{x}^{2} \mathbf{y} \mathbf{x}\right)$
7	$\operatorname{tr}\left(\mathbf{x}^{3} \mathbf{y}^{2} \mathbf{x} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{y}^{3} \mathbf{x}^{2} \mathbf{y} \mathbf{x}\right)$
8	$\operatorname{tr}\left(\mathbf{x}^{3} \mathbf{y}^{2} \mathbf{x}^{2} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{y}^{3} \mathbf{x}^{2} \mathbf{y}^{2} \mathbf{x}\right), \operatorname{tr}\left(\mathbf{x}^{3} \mathbf{y}^{3} \mathbf{x} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{y}^{3} \mathbf{x}^{3} \mathbf{y} \mathbf{x}\right)$
9	$\begin{aligned} & \operatorname{tr}\left(\mathbf{x}^{3} \mathbf{y} \mathbf{x}^{2} \mathbf{y} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{x}^{2} \mathbf{y}^{2} \mathbf{x} \mathbf{x}^{2} \mathbf{y}\right), \\ & \operatorname{tr}\left(\mathbf{y}^{2} \mathbf{x}^{2} \mathbf{y} \mathbf{y} \mathbf{y}^{\mathbf{x}}\right), \operatorname{tr}\left(\mathbf{y}^{3} \mathbf{x} \mathbf{y}^{\mathbf{x}} \mathbf{x} \mathbf{x}\right) \end{aligned}$
10	$\operatorname{tr}\left(\mathbf{x}^{3} \mathbf{y}^{3} \mathbf{x}^{2} \mathbf{y}^{2}\right)$

Table: \mathcal{G}_{2}

Djoković, and independently, Drensky and Sadikova showed that $\mathcal{G}_{1} \cup \mathcal{G}_{2}$ is a minimal system of 32 generators for $\mathbb{C}\left[\mathfrak{g l}(4, \mathbb{C})^{2} / / \mathrm{SL}(4, \mathbb{C})\right]$, where \mathcal{G}_{1} is a system of parameters (in particular, a maximal algebraically independent set). We could improve this number by two for $\mathbb{C}\left[\mathfrak{X}\left(F_{2}, \operatorname{SL}(4, \mathbb{C})\right)\right]$.

Djoković, and independently, Drensky and Sadikova showed that $\mathcal{G}_{1} \cup \mathcal{G}_{2}$ is a minimal system of 32 generators for $\mathbb{C}\left[\mathfrak{g l}(4, \mathbb{C})^{2} / / \mathrm{SL}(4, \mathbb{C})\right]$, where \mathcal{G}_{1} is a system of parameters (in particular, a maximal algebraically independent set). We could improve this number by two for $\mathbb{C}\left[\mathfrak{X}\left(F_{2}, \operatorname{SL}(4, \mathbb{C})\right)\right]$.

> Theorem
> (G. - Lawton) $\mathcal{G}_{1} \cup \mathcal{G}_{2}-\left\{\operatorname{tr}\left(\mathbf{x}^{4}\right), \operatorname{tr}\left(\mathbf{y}^{4}\right)\right\}$ is a minimal system of 30 generators for $\mathbb{C}\left[\mathfrak{X}\left(F_{2}, \mathrm{SL}(4, \mathbb{C})\right)\right]$, where $\mathcal{G}_{1}-\left\{\operatorname{tr}\left(\mathbf{x}^{4}\right), \operatorname{tr}\left(\mathbf{y}^{4}\right)\right\}$ is a maximal set of 15 algebraically independent elements.

Lemma

Let \mathcal{G} generate $\mathbb{C}\left[\mathcal{X}\left(F_{r}, \mathrm{SL}(4, \mathbb{C})\right)\right]$ and suppose $\operatorname{tr}\left(\mathbf{u x}{ }^{3} \mathbf{v}\right)$ is in \mathcal{G}. Then $\mathcal{G} \cup\left\{\operatorname{tr}\left(\mathbf{u x}^{-1} \mathbf{v}\right)\right\}-\left\{\operatorname{tr}\left(\mathbf{u x}^{3} \mathbf{v}\right)\right\}$ remains a generating set as long as $\operatorname{tr}(\mathbf{x})$, $\operatorname{tr}\left(\mathbf{x}^{2}\right), \operatorname{tr}\left(\mathbf{x}^{-1}\right), \operatorname{tr}(\mathbf{u v}), \operatorname{tr}(\mathbf{u x v})$, and $\operatorname{tr}\left(\mathbf{u x}^{2} \mathbf{v}\right)$ are in the subring generated by $\mathcal{G}-\left\{\operatorname{tr}\left(\mathbf{u x}{ }^{3} \mathbf{v}\right)\right\}$.

Proof.

The characteristic polynomial for $\operatorname{SL}(4, \mathbb{C})$ is:

$$
\mathbf{x}^{4}-\operatorname{tr}(\mathbf{x}) \mathbf{x}^{3}+\left(\frac{\operatorname{tr}(\mathbf{x})^{2}-\operatorname{tr}\left(\mathbf{x}^{2}\right)}{2}\right) \mathbf{x}^{2}-\operatorname{tr}\left(\mathbf{x}^{-1}\right) \mathbf{x}+\mathbf{I}=0 .
$$

Multiplying through on the left by a word \mathbf{u} and on the right by $\mathbf{x}^{-1} \mathbf{v}$ for a word \mathbf{v} gives:

$$
\mathbf{u x} \mathbf{x}-\operatorname{tr}(\mathbf{x}) \mathbf{u} \mathbf{x}^{2} \mathbf{v}+\left(\frac{\operatorname{tr}(\mathbf{x})^{2}-\operatorname{tr}\left(\mathbf{x}^{2}\right)}{2}\right) \mathbf{u x v}-\operatorname{tr}\left(\mathbf{x}^{-1}\right) \mathbf{u v}+\mathbf{u x}{ }^{-1} \mathbf{v}=0 .
$$

Therefore, taking traces of both sides of this latter equation, we have the lemma.

Let τ be the involutive outer automorphism that permutes \mathbf{x} and \mathbf{y} and let ι be the involutive outer automorphism that sends $\mathbf{x} \mapsto \mathbf{x}^{-1}$ and $\mathbf{y} \mapsto \mathbf{y}^{-1}$. Clearly τ and ι act on $\mathfrak{X}\left(F_{2}, \mathrm{SL}(4, \mathbb{C})\right)$ and its coordinate ring.

Let τ be the involutive outer automorphism that permutes \mathbf{x} and \mathbf{y} and let ι be the involutive outer automorphism that sends $\mathbf{x} \mapsto \mathbf{x}^{-1}$ and $\mathbf{y} \mapsto \mathbf{y}^{-1}$. Clearly τ and ι act on $\mathfrak{X}\left(F_{2}, \mathrm{SL}(4, \mathbb{C})\right)$ and its coordinate ring.

Corollary

$\mathcal{S} \cup \tau(\mathcal{S}) \cup\left\{\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{-1} \mathbf{x}^{2} \mathbf{y}^{2}\right)\right\}$ is a minimal set of 30 generators for $\mathbb{C}\left[\mathfrak{X}\left(F_{2}, \operatorname{SL}(4, \mathbb{C})\right)\right]$, where,

Let τ be the involutive outer automorphism that permutes \mathbf{x} and \mathbf{y} and let ι be the involutive outer automorphism that sends $\mathbf{x} \mapsto \mathbf{x}^{-1}$ and $\mathbf{y} \mapsto \mathbf{y}^{-1}$. Clearly τ and ι act on $\mathfrak{X}\left(F_{2}, \mathrm{SL}(4, \mathbb{C})\right)$ and its coordinate ring.

Corollary

$\mathcal{S} \cup \tau(\mathcal{S}) \cup\left\{\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{-1} \mathbf{x}^{2} \mathbf{y}^{2}\right)\right\}$ is a minimal set of 30 generators for $\mathbb{C}\left[\mathfrak{X}\left(F_{2}, \operatorname{SL}(4, \mathbb{C})\right)\right]$, where,

Word Length	Generator
1	$\operatorname{tr}(\mathbf{x})$
2	$\operatorname{tr}\left(\mathbf{x}^{2}\right), \operatorname{tr}(\mathbf{x} \mathbf{y})$
3	$\operatorname{tr}\left(\mathbf{x}^{-1}\right), \operatorname{tr}\left(\mathbf{x} \mathbf{y}^{-2}\right)$
4	$\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{x}^{2} \mathbf{y}^{2}\right), \operatorname{tr}(\mathbf{x y} \mathbf{x} \mathbf{y})$
5	$\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{2}\right)$
6	$\operatorname{tr}\left(\left(\mathbf{x}^{2} \mathbf{y}\right)^{2}\right), \operatorname{tr}\left(\mathbf{x}^{2} \mathbf{y}^{2} \mathbf{x} \mathbf{y}\right)$
7	$\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{2} \mathbf{x} \mathbf{y}\right)$
8	$\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{2} \mathbf{x}^{2} \mathbf{y}\right), \operatorname{tr} \mathbf{(\mathbf { x } ^ { - 1 } \mathbf { y } ^ { - 1 } \mathbf { x } \mathbf { y })}$
9	$\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y \mathbf { x } ^ { 2 } \mathbf { y } \mathbf { x } \mathbf { y }) , \operatorname { t r } (\mathbf { x } ^ { 2 } \mathbf { y } ^ { 2 } \mathbf { x y } \mathbf { x } ^ { 2 } \mathbf { y })}\right.$

Table: \mathcal{S}

Generating set for $\mathbb{C}\left[\mathfrak{X}\left(F_{2}, \mathrm{SU}(3,1)\right)\right]$

Theorem

(G. - Lawton) The following 22 traces determine any (polystable) pair $\langle A, B\rangle$ up to conjugation where $A, B \in \mathrm{SU}(3,1)$:

Word Length	Generator
1	$\operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y})$
2	$\operatorname{tr}\left(\mathbf{x}^{2}\right), \operatorname{tr}(\mathbf{x y}), \operatorname{tr}\left(\mathbf{y}^{2}\right), \operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}\right)$
3	$\operatorname{tr}\left(\mathbf{x} \mathbf{y}^{2}\right), \operatorname{tr}\left(\mathbf{y} \mathbf{x}^{2}\right)$
4	$\operatorname{tr}\left(\mathbf{x}^{2} \mathbf{y}^{2}\right), \operatorname{tr}(\mathbf{x y x} \mathbf{y}), \operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{-1} \mathbf{x y}\right)$
5	$\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{2} \mathbf{x y}\right), \operatorname{tr}\left(\mathbf{y}^{-1} \mathbf{x}^{2} \mathbf{y} \mathbf{x}\right)$
6	$\operatorname{tr}\left(\left(\mathbf{x}^{2} \mathbf{y}\right)^{2}\right), \operatorname{tr}\left(\left(\mathbf{y}^{2} \mathbf{x}\right)^{2}\right), \operatorname{tr}\left(\mathbf{x}^{2} \mathbf{y}^{2} \mathbf{x y}\right), \operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{-1} \mathbf{x}^{2} \mathbf{y}^{2}\right)$ $\operatorname{tr}\left(\mathbf{y}^{2} \mathbf{x}^{2} \mathbf{y x}\right), \operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y}^{2} \mathbf{x}^{2} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{y}^{-1} \mathbf{x}^{2} \mathbf{y}^{2} \mathbf{x}\right)$
7	$\operatorname{tr}\left(\mathbf{x}^{-1} \mathbf{y} \mathbf{x}^{2} \mathbf{y} \mathbf{x} \mathbf{y}\right), \operatorname{tr}\left(\mathbf{y}^{-1} \mathbf{x} \mathbf{y}^{2} \mathbf{x y \mathbf { x }}\right)$

Thank You!

