Conjugation classes of pairs in $SL(4, \mathbb{C})$ and SU(3, 1)

Krishnendu Gongopadhyay

(joint work with Sean Lawton)

September 1, 2015

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs

Theorem of Fricke and Vogt

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs

 There is a long tradition of work whose goal is to classify pairs of elements in SL(2, ℝ) or SL(2, ℂ) in connection with Fuchsian and Kleinian groups.

- There is a long tradition of work whose goal is to classify pairs of elements in SL(2, ℝ) or SL(2, ℂ) in connection with Fuchsian and Kleinian groups.
- **Theorem:** (Fricke-Vogt) A non-elementary two-generator free subgroup of $SL(2, \mathbb{C})$ is determined up to conjugation by the traces of the generators and their product.

- There is a long tradition of work whose goal is to classify pairs of elements in SL(2, ℝ) or SL(2, ℂ) in connection with Fuchsian and Kleinian groups.
- **Theorem:** (Fricke-Vogt) A non-elementary two-generator free subgroup of $SL(2, \mathbb{C})$ is determined up to conjugation by the traces of the generators and their product.

Actually it holds more generally for any 'polystable' pairs.

- There is a long tradition of work whose goal is to classify pairs of elements in SL(2, ℝ) or SL(2, ℂ) in connection with Fuchsian and Kleinian groups.
- **Theorem:** (Fricke-Vogt) A non-elementary two-generator free subgroup of $SL(2, \mathbb{C})$ is determined up to conjugation by the traces of the generators and their product.

Actually it holds more generally for any 'polystable' pairs.

• This result is increamental in the development of Teichmüller theory. In particular, it gives the Fenchel-Nielsen coordinates on the Teichmüller space.

• One can ask for generalization of Fricke-Vogt for other groups!

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs

- One can ask for generalization of Fricke-Vogt for other groups!
- The question can be reformulated as finding the minimal generating set for the character variety of *F*₂ into a group *G* of your choice!

- One can ask for generalization of Fricke-Vogt for other groups!
- The question can be reformulated as finding the minimal generating set for the character variety of *F*₂ into a group *G* of your choice!
- Even for SL(n, C), for n ≥ 3, the picture is pretty complicated but some investigations have been done in recent time, mostly by Florentino, Lawton, Sikora, Drensky.....

- One can ask for generalization of Fricke-Vogt for other groups!
- The question can be reformulated as finding the minimal generating set for the character variety of *F*₂ into a group *G* of your choice!
- Even for SL(n, C), for n ≥ 3, the picture is pretty complicated but some investigations have been done in recent time, mostly by Florentino, Lawton, Sikora, Drensky.....
- \bullet We shall address this question for ${\rm SL}(4,\mathbb{C})$ and ${\rm SU}(3,1)$ in this talk.

- One can ask for generalization of Fricke-Vogt for other groups!
- The question can be reformulated as finding the minimal generating set for the character variety of *F*₂ into a group *G* of your choice!
- Even for SL(n, C), for n ≥ 3, the picture is pretty complicated but some investigations have been done in recent time, mostly by Florentino, Lawton, Sikora, Drensky.....
- We shall address this question for ${\rm SL}(4,\mathbb{C})$ and ${\rm SU}(3,1)$ in this talk.
- In geometric terms, answering this question will give some idea about the topology of the complex hyperbolic quasi-Fuchsian spaces in dimension three.

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs

 Let V = C^{n,1} be the complex vector space Cⁿ equipped with the Hermitian form of signature (n,1) given by

$$\langle \mathbf{z}, \mathbf{w} \rangle = -z_1 \bar{w}_1 + z_2 \bar{w}_2 + z_3 \bar{w}_3 + \dots + z_{n+1} \bar{w}_{n+1}$$

 Let V = C^{n,1} be the complex vector space Cⁿ equipped with the Hermitian form of signature (n,1) given by

$$\langle \mathbf{z}, \mathbf{w} \rangle = -z_1 \bar{w}_1 + z_2 \bar{w}_2 + z_3 \bar{w}_3 + \cdots + z_{n+1} \bar{w}_{n+1}.$$

• We consider the following subspaces of $\mathbb{C}^{n,1}$:

$$\begin{split} V_{-} &= \{ \mathbf{z} \in \mathbb{C}^{n,1} : \langle \mathbf{z}, \mathbf{z} \rangle < 0 \}, \ \mathbb{V}_{+} = \{ \mathbf{z} \in \mathbb{C}^{n,1} : \langle \mathbf{z}, \mathbf{z} \rangle > 0 \}, \\ V_{0} &= \{ \mathbf{z} - \{ \mathbf{0} \} \in \mathbb{C}^{n,1} : \langle \mathbf{z}, \mathbf{z} \rangle = 0 \}. \end{split}$$

 Let V = C^{n,1} be the complex vector space Cⁿ equipped with the Hermitian form of signature (n,1) given by

$$\langle \mathbf{z}, \mathbf{w} \rangle = -z_1 \bar{w}_1 + z_2 \bar{w}_2 + z_3 \bar{w}_3 + \dots + z_{n+1} \bar{w}_{n+1}.$$

• We consider the following subspaces of $\mathbb{C}^{n,1}$:

$$\begin{split} V_- &= \{ \textbf{z} \in \mathbb{C}^{n,1} : \langle \textbf{z}, \textbf{z} \rangle < 0 \}, \ \mathbb{V}_+ = \{ \textbf{z} \in \mathbb{C}^{n,1} : \langle \textbf{z}, \textbf{z} \rangle > 0 \}, \\ V_0 &= \{ \textbf{z} - \{ \textbf{0} \} \in \mathbb{C}^{n,1} : \langle \textbf{z}, \textbf{z} \rangle = 0 \}. \end{split}$$

 The complex hyperbolic space Hⁿ_ℂ is the projectivization of *V*_−. It can be identified with the disk D²ⁿ. The ideal boundary is S^{2n−1}.
 The isometry group of $\langle ., . \rangle$ acts as the isometry group of $\mathbf{H}^{n}_{\mathbb{C}}$.

The isometry group of $\langle ., . \rangle$ acts as the isometry group of $\mathbf{H}^{n}_{\mathbb{C}}$.

- **(**) An isometry is *elliptic* if it fixes at least one point on $\mathbf{H}^n_{\mathbb{C}}$.
- ② An isometry is *loxodromic* or *hyperbolic* if it fixes exactly two points of ∂Hⁿ_C.
- **3** An isometry is *parabolic* if it fixes exactly one point of $\partial \mathbf{H}^{n}_{\mathbb{C}}$.

The isometry group of $\langle ., . \rangle$ acts as the isometry group of $\mathbf{H}^{n}_{\mathbb{C}}$.

- **(**) An isometry is *elliptic* if it fixes at least one point on $\mathbf{H}^n_{\mathbb{C}}$.
- ② An isometry is *loxodromic* or *hyperbolic* if it fixes exactly two points of ∂Hⁿ_C.
- **3** An isometry is *parabolic* if it fixes exactly one point of $\partial \mathbf{H}_{\mathbb{C}}^{n}$.

Goldman classified these isometries algebraically in SU(2, 1). In a joint work with Parker and Parsad, we have generalized Goldman's result for SU(p, q). In particular, this gives a complete algebraic classification for SU(3, 1), the group of our interest in this talk!

 Let Γ = (γ₁, ..., γ_r | R) be a finitely generated discrete group (with relations R) and G a connected Lie group.

- Let Γ = (γ₁, ..., γ_r | R) be a finitely generated discrete group (with relations R) and G a connected Lie group.
- The set of homomorphisms Hom(Γ, G) naturally sits inside G^r via the evaluation map: ρ → (ρ(γ₁), ..., ρ(γ_r)).

- Let Γ = (γ₁, ..., γ_r | R) be a finitely generated discrete group (with relations R) and G a connected Lie group.
- The set of homomorphisms Hom(Γ, G) naturally sits inside G^r via the evaluation map: ρ → (ρ(γ₁), ..., ρ(γ_r)). Therefore, Hom(Γ, G) inherits the subspace topology.

- Let Γ = (γ₁, ..., γ_r | R) be a finitely generated discrete group (with relations R) and G a connected Lie group.
- The set of homomorphisms Hom(Γ, G) naturally sits inside G^r via the evaluation map: ρ → (ρ(γ₁), ..., ρ(γ_r)). Therefore, Hom(Γ, G) inherits the subspace topology.
- Define Hom(Γ, G)* to be all ρ in Hom(Γ, G) such that the conjugation orbit of ρ is closed. Such points are called polystable.

- Let Γ = (γ₁,..., γ_r | R) be a finitely generated discrete group (with relations R) and G a connected Lie group.
- The set of homomorphisms Hom(Γ, G) naturally sits inside G^r via the evaluation map: ρ → (ρ(γ₁), ..., ρ(γ_r)). Therefore, Hom(Γ, G) inherits the subspace topology.
- Define Hom(Γ, G)* to be all ρ in Hom(Γ, G) such that the conjugation orbit of ρ is closed. Such points are called polystable.
- The G-character variety of Γ is then the conjugation orbit space 𝔅(Γ, G) := Hom(Γ, G)*/G.

- Let Γ = (γ₁,..., γ_r | R) be a finitely generated discrete group (with relations R) and G a connected Lie group.
- The set of homomorphisms Hom(Γ, G) naturally sits inside G^r via the evaluation map: ρ → (ρ(γ₁), ..., ρ(γ_r)). Therefore, Hom(Γ, G) inherits the subspace topology.
- Define Hom(Γ, G)* to be all ρ in Hom(Γ, G) such that the conjugation orbit of ρ is closed. Such points are called polystable.
- The G-character variety of Γ is then the conjugation orbit space 𝔅(Γ, G) := Hom(Γ, G)*/G.
- Our interest: $\Gamma = F_2$, $G = SL(4, \mathbb{C})$ and SU(3, 1)

 When G is a complex reductive affine algebraic group, Hom(Γ, G) is an affine variety:

→ Ξ →

 When G is a complex reductive affine algebraic group, Hom(Γ, G) is an affine variety: cut out of the product variety G^r by the words in R.

- When G is a complex reductive affine algebraic group, Hom(Γ, G) is an affine variety: cut out of the product variety G^r by the words in R.
- Theorem: [Florentino-Lawton], [Luna] *X*(Γ, G) is homeomorphic to the geometric points (with the Euclidean topology on an affine variety) of the Geometric Invariant Theory (GIT) quotient Hom(Γ, G)//G := Spec(ℂ[Hom(Γ, G)]^G), where ℂ[Hom(Γ, G)]^G is the ring of G-invariant polynomials in the coordinate ring ℂ[Hom(Γ, G)].

- When G is a complex reductive affine algebraic group, Hom(Γ, G) is an affine variety: cut out of the product variety G^r by the words in R.
- Theorem: [Florentino-Lawton], [Luna] *X*(Γ, G) is homeomorphic to the geometric points (with the Euclidean topology on an affine variety) of the Geometric Invariant Theory (GIT) quotient Hom(Γ, G)//G := Spec(ℂ[Hom(Γ, G)]^G), where ℂ[Hom(Γ, G)]^G is the ring of G-invariant polynomials in the coordinate ring ℂ[Hom(Γ, G)].
- (Florentino-Lawton-Ramras) The GIT quotient with this topology is homotopic to the non-Hausdorff quotient space $\operatorname{Hom}(\Gamma, G)/G$.

伺 ト く ヨ ト く ヨ ト

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs

Let F_r^+ be the free non-commutative monoid generated by symbols $\{x_1, ..., x_r\}$. Let M_r^+ be the monoid generated by $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_r\}$, where $\mathbf{x}_k = (x_{ii}^k)$ are matrices in rn^2 indeterminates.

Let F_r^+ be the free non-commutative monoid generated by symbols $\{x_1, ..., x_r\}$. Let M_r^+ be the monoid generated by $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_r\}$, where $\mathbf{x}_k = (x_{ii}^k)$ are matrices in rn^2 indeterminates.

There is a surjection $F_r^+ \to M_r^+$, defined by mapping $x_i \mapsto \mathbf{x}_i$. Let $\mathbf{w} \in M_r^+$ be the image of $w \in F_r^+$ under this map.

Let F_r^+ be the free non-commutative monoid generated by symbols $\{x_1, ..., x_r\}$. Let M_r^+ be the monoid generated by $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_r\}$, where $\mathbf{x}_k = (x_{ii}^k)$ are matrices in rn^2 indeterminates.

There is a surjection $F_r^+ \to M_r^+$, defined by mapping $x_i \mapsto \mathbf{x}_i$. Let $\mathbf{w} \in M_r^+$ be the image of $w \in F_r^+$ under this map.

Let $|\cdot|$ be the function that takes a cyclically reduced word in F_r to its word length.

Let F_r^+ be the free non-commutative monoid generated by symbols $\{x_1, ..., x_r\}$. Let M_r^+ be the monoid generated by $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_r\}$, where $\mathbf{x}_k = (x_{ii}^k)$ are matrices in rn^2 indeterminates.

There is a surjection $F_r^+ \to M_r^+$, defined by mapping $x_i \mapsto \mathbf{x}_i$. Let $\mathbf{w} \in M_r^+$ be the image of $w \in F_r^+$ under this map.

Let $|\cdot|$ be the function that takes a cyclically reduced word in F_r to its word length.

(Procesi) The ring of invariants $\mathbb{C}[\mathfrak{gl}(n,\mathbb{C})^r]^{\mathrm{SL}(n,\mathbb{C})}$ is generated by

$$\{\mathrm{tr}(\mathbf{w})\mid \mathrm{w}\in\mathrm{F}_{\mathrm{r}}^{+},\ |\mathrm{w}|\leq\mathrm{n}^{2}\}. \tag{1}$$

The coordinate ring $\mathbb{C}[\mathfrak{X}(F_r, SL(n, \mathbb{C}))]$ is equal to $\mathbb{C}[SL(n, \mathbb{C})^r]^{SL(n, \mathbb{C})}$.

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs

< ∃ >

 The coordinate ring $\mathbb{C}[\mathfrak{X}(F_r, SL(n, \mathbb{C}))]$ is equal to $\mathbb{C}[SL(n, \mathbb{C})^r]^{SL(n, \mathbb{C})}$.

Since the determinant is conjugation invariant $\mathbb{C}[\mathrm{SL}(n,\mathbb{C})^r]^{\mathrm{SL}(n,\mathbb{C})}\cong$

The coordinate ring $\mathbb{C}[\mathfrak{X}(F_r, SL(n, \mathbb{C}))]$ is equal to $\mathbb{C}[SL(n, \mathbb{C})^r]^{SL(n, \mathbb{C})}$.

Since the determinant is conjugation invariant $\mathbb{C}[\mathrm{SL}(n,\mathbb{C})^r]^{\mathrm{SL}(n,\mathbb{C})}\cong$

$$(\mathbb{C}[\mathfrak{gl}(n,\mathbb{C})^r]/\Delta)^{\mathrm{SL}(n,\mathbb{C})} = \mathbb{C}[\mathfrak{gl}(n,\mathbb{C})^r]^{\mathrm{SL}(n,\mathbb{C})}/\Delta,$$

where Δ is the ideal generated by the *r* polynomials det(\mathbf{x}_k) - 1.

The coordinate ring $\mathbb{C}[\mathfrak{X}(F_r, SL(n, \mathbb{C}))]$ is equal to $\mathbb{C}[SL(n, \mathbb{C})^r]^{SL(n, \mathbb{C})}$.

Since the determinant is conjugation invariant $\mathbb{C}[\mathrm{SL}(n,\mathbb{C})^r]^{\mathrm{SL}(n,\mathbb{C})}\cong$

$$(\mathbb{C}[\mathfrak{gl}(n,\mathbb{C})^r]/\Delta)^{\mathrm{SL}(n,\mathbb{C})} = \mathbb{C}[\mathfrak{gl}(n,\mathbb{C})^r]^{\mathrm{SL}(n,\mathbb{C})}/\Delta,$$

where Δ is the ideal generated by the *r* polynomials det(\mathbf{x}_k) - 1.

Since the characteristic polynomial allows one to write the determinant as a polynomial in traces of words, $\mathbb{C}[\mathfrak{X}(F_r, \mathrm{SL}(n, \mathbb{C}))]$ is generated by $\{\mathrm{tr}(\mathbf{w}) \mid w \in F_r^+, |w| \le n^2\}$ as well.

 $\begin{aligned} \mathbf{x}_k^* &= (-1)^{i+j} \mathrm{Cof}_{ji}(\mathbf{x}_k). \text{ Let } M_r^* \text{ be the monoid generated by} \\ \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_r\} \text{ and } \{\mathbf{x}_1^*, \mathbf{x}_2^*, ..., \mathbf{x}_r^*\}. \end{aligned}$

 $\mathbf{x}_{k}^{*} = (-1)^{i+j} \operatorname{Cof}_{ji}(\mathbf{x}_{k})$. Let M_{r}^{*} be the monoid generated by $\{\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{r}\}$ and $\{\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, ..., \mathbf{x}_{r}^{*}\}$.

Let N_r be the normal sub-monoid generated by $\{\det(\mathbf{x}_k)\mathbf{I} \mid 1 \le k \le r\}.$

 $\begin{aligned} \mathbf{x}_k^* &= (-1)^{i+j} \mathrm{Cof}_{ji}(\mathbf{x}_k). \text{ Let } M_r^* \text{ be the monoid generated by} \\ \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_r\} \text{ and } \{\mathbf{x}_1^*, \mathbf{x}_2^*, ..., \mathbf{x}_r^*\}. \end{aligned}$

Let N_r be the normal sub-monoid generated by $\{\det(\mathbf{x}_k)\mathbf{I} \mid 1 \le k \le r\}.$

Define $M_r = M_r^*/N_r$.

 $\mathbf{x}_{k}^{*} = (-1)^{i+j} \operatorname{Cof}_{ji}(\mathbf{x}_{k})$. Let M_{r}^{*} be the monoid generated by $\{\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{r}\}$ and $\{\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, ..., \mathbf{x}_{r}^{*}\}$.

Let N_r be the normal sub-monoid generated by $\{\det(\mathbf{x}_k)\mathbf{I} \mid 1 \le k \le r\}.$

Define $M_r = M_r^*/N_r$.

Now let $\mathbb{C}M_r$ be the group algebra defined over \mathbb{C} with respect to matrix addition and scalar multiplication in M_r . Likewise, let $\mathbb{C}M_r^*$ be the semi-group algebra of the monoid M_r^* .

The following diagram (from Lawton's thesis) forms a bridge between the non-commutative algebra $\mathbb{C}M_r$ and the moduli space $\mathfrak{X}(F_r, \mathrm{SL}(n, \mathbb{C}))$, built in the language of free groups:

This relationship has been exploited to obtain many geometric results in the case n = 3.

The following diagram (from Lawton's thesis) forms a bridge between the non-commutative algebra $\mathbb{C}M_r$ and the moduli space $\mathfrak{X}(F_r, \mathrm{SL}(n, \mathbb{C}))$, built in the language of free groups:

This relationship has been exploited to obtain many geometric results in the case n = 3. In particular, the relationship to the non-commutative algebra was used by Lawton to completely describe the coordinate ring of $\mathfrak{X}(F_2, \mathrm{SL}(3, \mathbb{C}))$.

$\mathfrak{X}(F_2,\mathrm{SL}(3,\mathbb{C}))$

(Lawton) $\mathfrak{X}(F_2, \mathrm{SL}(3, \mathbb{C}))$ is generated by: $\operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y}), \operatorname{tr}(\mathbf{x}\mathbf{y}^{-1}), \operatorname{tr}(\mathbf{x}^{-1}), \operatorname{tr}(\mathbf{y}^{-1}),$ $\operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}^{-1}), \operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}), \operatorname{tr}([\mathbf{x}, \mathbf{y}]),$ where $[\mathbf{x}, \mathbf{y}] = \mathbf{x}^{-1}\mathbf{y}^{-1}\mathbf{x}\mathbf{y}.$

「同 ト イ ヨ ト イ ヨ ト ― ヨ

$\mathfrak{X}(F_2,\mathrm{SL}(3,\mathbb{C}))$

(Lawton) $\mathfrak{X}(F_2, \mathrm{SL}(3, \mathbb{C}))$ is generated by:

$$tr(x), tr(y), tr(xy^{-1}), tr(x^{-1}), tr(y^{-1}),$$

$$\operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}^{-1}), \operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}), \operatorname{tr}([\mathbf{x},\mathbf{y}]),$$

where $[\mathbf{x}, \mathbf{y}] = \mathbf{x}^{-1} \mathbf{y}^{-1} \mathbf{x} \mathbf{y}$.

As a consequence of this result, we have the following for SU(2, 1). (Will, Wen) $\mathfrak{X}(F_2, SU(2, 1))$ is generated by:

$$\operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y}), \operatorname{tr}(\mathbf{x}\mathbf{y}), \operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}), \operatorname{tr}([\mathbf{x},\mathbf{y}]).$$

$\mathfrak{X}(F_2,\mathrm{SL}(3,\mathbb{C}))$

(Lawton) $\mathfrak{X}(F_2, \mathrm{SL}(3, \mathbb{C}))$ is generated by:

$$tr(x), tr(y), tr(xy^{-1}), tr(x^{-1}), tr(y^{-1}),$$

$$\operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}^{-1}), \ \operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}), \ \operatorname{tr}([\mathbf{x},\mathbf{y}]),$$

where $[\mathbf{x}, \mathbf{y}] = \mathbf{x}^{-1} \mathbf{y}^{-1} \mathbf{x} \mathbf{y}$.

As a consequence of this result, we have the following for SU(2, 1). (Will, Wen) $\mathfrak{X}(F_2, SU(2, 1))$ is generated by:

$$\operatorname{tr}(\mathbf{x}), \operatorname{tr}(\mathbf{y}), \operatorname{tr}(\mathbf{x}\mathbf{y}), \operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}), \operatorname{tr}([\mathbf{x},\mathbf{y}]).$$

Parker and Platis proved a special case:

(Parker & Platis) A pair of loxodromic elements in SU(2,1) is determined up to conjugacy by their traces and a point on the cross ratio variety corrresponding to these elements.

Partial Generalization of Parker-Platis for SU(3, 1)

A pair (A, B) of loxodromics in SU(3, 1) is called *non-singular* if

Partial Generalization of Parker-Platis for SU(3, 1)

A pair (A, B) of loxodromics in SU(3, 1) is called *non-singular* if

(i) A and B are loxodromics without a common fixed point and the fixed points of A and B do not lie on a common \mathbb{C}^2 -chain.

Partial Generalization of Parker-Platis for SU(3,1)

A pair (A, B) of loxodromics in SU(3, 1) is called *non-singular* if

(i) A and B are loxodromics without a common fixed point and the fixed points of A and B do not lie on a common \mathbb{C}^2 -chain. (ii) The fixed point set of A is disjoint from at least one of the \mathbb{C}^2 -chains polar to the positive eigenvectors of B and, the fixed point set of B is disjoint from at least one of the \mathbb{C}^2 -chains polar to the positive eigenvectors of A.

Partial Generalization of Parker-Platis for SU(3, 1)

A pair (A, B) of loxodromics in SU(3, 1) is called *non-singular* if

(i) A and B are loxodromics without a common fixed point and the fixed points of A and B do not lie on a common \mathbb{C}^2 -chain. (ii) The fixed point set of A is disjoint from at least one of the \mathbb{C}^2 -chains polar to the positive eigenvectors of B and, the fixed point set of B is disjoint from at least one of the \mathbb{C}^2 -chains polar to the positive eigenvectors of A.

Theorem. (G. - Parsad) Let $\rho : F_2 \to SU(3,1)$ be a representation such that $\rho(m)$, $\rho(n)$ are loxodromic and generate a non-singular subgroup of SU(3,1). Then for some $i, j \in \{1,2\}$, there exists two non-zero complex parameters α_i and β_j such that these, along with coefficients of the characteristic polynomials of $\rho(m)$, $\rho(n)$ and a point on the cross-ratio variety, completely determine ρ up to conjugacy.

Here α_1 , α_2 , β_1 , β_2 are 'cross-ratios' with three null vectors and one positive-type eigenvector.

Generating Set for $\mathfrak{X}(F_2, \mathrm{SL}(4, \mathbb{C}))$

Word Length	Generator
1	$\operatorname{tr}(\mathbf{x}), \ \operatorname{tr}(\mathbf{y})$
2	$\operatorname{tr}(\mathbf{x}^2), \ \operatorname{tr}(\mathbf{x}\mathbf{y}), \ \operatorname{tr}(\mathbf{y}^2)$
3	$\operatorname{tr}(\mathbf{x}^3), \ \operatorname{tr}(\mathbf{x}^2\mathbf{y}), \ \operatorname{tr}(\mathbf{x}\mathbf{y}^2), \ \operatorname{tr}(\mathbf{y}^3)$
4	$\operatorname{tr}(\mathbf{x}^4), \operatorname{tr}(\mathbf{x}^3\mathbf{y}), \operatorname{tr}(\mathbf{x}^2\mathbf{y}^2), \operatorname{tr}(\mathbf{x}\mathbf{y}^3), \operatorname{tr}(\mathbf{y}^4), \operatorname{tr}(\mathbf{x}\mathbf{y}\mathbf{x}\mathbf{y})$
6	$\operatorname{tr}((\mathbf{x}^2\mathbf{y})^2), \ \operatorname{tr}((\mathbf{y}^2\mathbf{x})^2)$

Table: \mathcal{G}_1

- ● ● ●

Generating Set for $\mathfrak{X}(F_2, \mathrm{SL}(4, \mathbb{C}))$

Word Length	Generator
1	$\operatorname{tr}(\mathbf{x}), \ \operatorname{tr}(\mathbf{y})$
2	$\operatorname{tr}(\mathbf{x}^2), \ \operatorname{tr}(\mathbf{x}\mathbf{y}), \ \operatorname{tr}(\mathbf{y}^2)$
3	$\operatorname{tr}(\mathbf{x}^3), \ \operatorname{tr}(\mathbf{x}^2\mathbf{y}), \ \operatorname{tr}(\mathbf{x}\mathbf{y}^2), \ \operatorname{tr}(\mathbf{y}^3)$
4	$\operatorname{tr}(\mathbf{x}^4), \operatorname{tr}(\mathbf{x}^3\mathbf{y}), \operatorname{tr}(\mathbf{x}^2\mathbf{y}^2), \operatorname{tr}(\mathbf{x}\mathbf{y}^3), \operatorname{tr}(\mathbf{y}^4), \operatorname{tr}(\mathbf{x}\mathbf{y}\mathbf{x}\mathbf{y})$
6	$\operatorname{tr}((\mathbf{x}^2\mathbf{y})^2), \ \operatorname{tr}((\mathbf{y}^2\mathbf{x})^2)$

Table: \mathcal{G}_1

Word Length	Generator
5	$\operatorname{tr}(\mathbf{x}^3\mathbf{y}^2), \ \operatorname{tr}(\mathbf{y}^3\mathbf{x}^2)$
6	$tr(x^2y^2xy), tr(y^2x^2yx)$
7	$tr(x^3y^2xy), tr(y^3x^2yx)$
8	$tr(\mathbf{x}^3\mathbf{y}^2\mathbf{x}^2\mathbf{y}), tr(\mathbf{y}^3\mathbf{x}^2\mathbf{y}^2\mathbf{x}), tr(\mathbf{x}^3\mathbf{y}^3\mathbf{x}\mathbf{y}), tr(\mathbf{y}^3\mathbf{x}^3\mathbf{y}\mathbf{x})$
9	$\operatorname{tr}(\mathbf{x}^3\mathbf{y}\mathbf{x}^2\mathbf{y}\mathbf{x}\mathbf{y}), \ \operatorname{tr}(\mathbf{x}^2\mathbf{y}^2\mathbf{x}\mathbf{y}\mathbf{x}^2\mathbf{y}),$
	$\operatorname{tr}(\mathbf{y}^2\mathbf{x}^2\mathbf{y}\mathbf{x}\mathbf{y}^2\mathbf{x}), \ \operatorname{tr}(\mathbf{y}^3\mathbf{x}\mathbf{y}^2\mathbf{x}\mathbf{y}\mathbf{x})$
10	$\operatorname{tr}(\mathbf{x}^3\mathbf{y}^3\mathbf{x}^2\mathbf{y}^2)$

Table: \mathcal{G}_2

< 17 ▶

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs

Djoković, and independently, Drensky and Sadikova showed that $\mathcal{G}_1 \cup \mathcal{G}_2$ is a minimal system of 32 generators for $\mathbb{C}[\mathfrak{gl}(4,\mathbb{C})^2/\!/\mathrm{SL}(4,\mathbb{C})]$, where \mathcal{G}_1 is a system of parameters (in particular, a maximal algebraically independent set). We could improve this number by two for $\mathbb{C}[\mathfrak{X}(F_2,\mathrm{SL}(4,\mathbb{C}))]$.

Djoković, and independently, Drensky and Sadikova showed that $\mathcal{G}_1 \cup \mathcal{G}_2$ is a minimal system of 32 generators for $\mathbb{C}[\mathfrak{gl}(4,\mathbb{C})^2/\!/\mathrm{SL}(4,\mathbb{C})]$, where \mathcal{G}_1 is a system of parameters (in particular, a maximal algebraically independent set). We could improve this number by two for $\mathbb{C}[\mathfrak{X}(F_2,\mathrm{SL}(4,\mathbb{C}))]$.

Theorem

(G. - Lawton) $\mathcal{G}_1 \cup \mathcal{G}_2 - \{\operatorname{tr}(\mathbf{x}^4), \operatorname{tr}(\mathbf{y}^4)\}\$ is a minimal system of 30 generators for $\mathbb{C}[\mathfrak{X}(F_2, \operatorname{SL}(4, \mathbb{C}))]$, where $\mathcal{G}_1 - \{\operatorname{tr}(\mathbf{x}^4), \operatorname{tr}(\mathbf{y}^4)\}\$ is a maximal set of 15 algebraically independent elements.

Lemma

Let \mathcal{G} generate $\mathbb{C}[\mathfrak{X}(F_r, \mathrm{SL}(4, \mathbb{C}))]$ and suppose $\mathrm{tr}(\mathbf{ux}^3\mathbf{v})$ is in \mathcal{G} . Then $\mathcal{G} \cup \{\mathrm{tr}(\mathbf{ux}^{-1}\mathbf{v})\} - \{\mathrm{tr}(\mathbf{ux}^3\mathbf{v})\}$ remains a generating set as long as $\mathrm{tr}(\mathbf{x})$, $\mathrm{tr}(\mathbf{x}^2)$, $\mathrm{tr}(\mathbf{x}^{-1})$, $\mathrm{tr}(\mathbf{uv})$, $\mathrm{tr}(\mathbf{ux}\mathbf{v})$, and $\mathrm{tr}(\mathbf{ux}^2\mathbf{v})$ are in the subring generated by $\mathcal{G} - \{\mathrm{tr}(\mathbf{ux}^3\mathbf{v})\}$.

Proof.

The characteristic polynomial for $SL(4, \mathbb{C})$ is:

$$\mathbf{x}^{4} - \operatorname{tr}(\mathbf{x})\mathbf{x}^{3} + \left(\frac{\operatorname{tr}(\mathbf{x})^{2} - \operatorname{tr}(\mathbf{x}^{2})}{2}\right)\mathbf{x}^{2} - \operatorname{tr}(\mathbf{x}^{-1})\mathbf{x} + \mathbf{I} = 0.$$

Multiplying through on the left by a word ${\bm u}$ and on the right by ${\bm x}^{-1} {\bm v}$ for a word ${\bm v}$ gives:

$$\mathbf{u}\mathbf{x}^{3}\mathbf{v} - \mathrm{tr}(\mathbf{x})\mathbf{u}\mathbf{x}^{2}\mathbf{v} + \left(\frac{\mathrm{tr}(\mathbf{x})^{2} - \mathrm{tr}(\mathbf{x}^{2})}{2}\right)\mathbf{u}\mathbf{x}\mathbf{v} - \mathrm{tr}(\mathbf{x}^{-1})\mathbf{u}\mathbf{v} + \mathbf{u}\mathbf{x}^{-1}\mathbf{v} = 0.$$

Therefore, taking traces of both sides of this latter equation, we have the lemma. $\hfill \Box$

Let τ be the involutive outer automorphism that permutes **x** and **y** and let ι be the involutive outer automorphism that sends $\mathbf{x} \mapsto \mathbf{x}^{-1}$ and $\mathbf{y} \mapsto \mathbf{y}^{-1}$. Clearly τ and ι act on $\mathfrak{X}(F_2, \mathrm{SL}(4, \mathbb{C}))$ and its coordinate ring. Let τ be the involutive outer automorphism that permutes **x** and **y** and let ι be the involutive outer automorphism that sends $\mathbf{x} \mapsto \mathbf{x}^{-1}$ and $\mathbf{y} \mapsto \mathbf{y}^{-1}$. Clearly τ and ι act on $\mathfrak{X}(F_2, \mathrm{SL}(4, \mathbb{C}))$ and its coordinate ring.

Corollary

 $S \cup \tau(S) \cup \{ tr(\mathbf{x}^{-1}\mathbf{y}^{-1}\mathbf{x}^2\mathbf{y}^2) \}$ is a minimal set of 30 generators for $\mathbb{C}[\mathfrak{X}(F_2, SL(4, \mathbb{C}))]$, where,

Let τ be the involutive outer automorphism that permutes **x** and **y** and let ι be the involutive outer automorphism that sends $\mathbf{x} \mapsto \mathbf{x}^{-1}$ and $\mathbf{y} \mapsto \mathbf{y}^{-1}$. Clearly τ and ι act on $\mathfrak{X}(F_2, \mathrm{SL}(4, \mathbb{C}))$ and its coordinate ring.

Corollary

 $S \cup \tau(S) \cup \{ tr(\mathbf{x}^{-1}\mathbf{y}^{-1}\mathbf{x}^2\mathbf{y}^2) \}$ is a minimal set of 30 generators for $\mathbb{C}[\mathfrak{X}(F_2, SL(4, \mathbb{C}))]$, where,

Word Length	Generator
1	$\operatorname{tr}(\mathbf{x})$
2	$tr(x^2), tr(xy)$
3	$\operatorname{tr}(\mathbf{x}^{-1}), \ \operatorname{tr}(\mathbf{x}\mathbf{y}^{-2})$
4	$\operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}), \ \operatorname{tr}(\mathbf{x}^2\mathbf{y}^2), \ \operatorname{tr}(\mathbf{x}\mathbf{y}\mathbf{x}\mathbf{y})$
5	$\operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}^2)$
6	$\operatorname{tr}((\mathbf{x}^2\mathbf{y})^2), \operatorname{tr}(\mathbf{x}^2\mathbf{y}^2\mathbf{x}\mathbf{y})$
7	$\operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}^2\mathbf{x}\mathbf{y})$
8	$\operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}^2\mathbf{x}^2\mathbf{y}), \ \operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}^{-1}\mathbf{x}\mathbf{y})$
9	$\operatorname{tr}(\mathbf{x}^{-1}\mathbf{y}\mathbf{x}^{2}\mathbf{y}\mathbf{x}\mathbf{y}), \ \operatorname{tr}(\mathbf{x}^{2}\mathbf{y}^{2}\mathbf{x}\mathbf{y}\mathbf{x}^{2}\mathbf{y})$

Table: \mathcal{S}

Generating set for $\mathbb{C}[\mathfrak{X}(F_2, \mathrm{SU}(3, 1))]$

Theorem

(G. - Lawton) The following 22 traces determine any (polystable) pair $\langle A, B \rangle$ up to conjugation where $A, B \in SU(3, 1)$:

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank You!

э

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs