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Theorem of Fricke and Vogt

There is a long tradition of work whose goal is to classify pairs
of elements in SL(2,R) or SL(2,C) in connection with
Fuchsian and Kleinian groups.

Theorem: (Fricke-Vogt) A non-elementary two-generator
free subgroup of SL(2,C) is determined up to conjugation by
the traces of the generators and their product.

Actually it holds more generally for any ‘polystable’ pairs.

This result is increamental in the development of Teichmüller
theory. In particular, it gives the Fenchel-Nielsen coordinates
on the Teichmüller space.
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One can ask for generalization of Fricke-Vogt for other groups!

The question can be reformulated as finding the minimal
generating set for the character variety of F2 into a group G
of your choice!

Even for SL(n,C), for n ≥ 3, the picture is pretty complicated
but some investigations have been done in recent time, mostly
by Florentino, Lawton, Sikora, Drensky.....

We shall address this question for SL(4,C) and SU(3, 1) in
this talk.

In geometric terms, answering this question will give some
idea about the topology of the complex hyperbolic
quasi-Fuchsian spaces in dimension three.
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Complex hyperbolic space

Let V = Cn,1 be the complex vector space Cn equipped with
the Hermitian form of signature (n,1) given by

�z,w� = −z1w̄1 + z2w̄2 + z3w̄3 + · · ·++zn+1w̄n+1.

We consider the following subspaces of Cn,1:

V− = {z ∈ Cn,1 : �z, z� < 0}, V+ = {z ∈ Cn,1 : �z, z� > 0},

V0 = {z− {0} ∈ Cn,1 : �z, z� = 0}.

The complex hyperbolic space H
n
C is the projectivization of

V−. It can be identified with the disk D2n. The ideal
boundary is S2n−1.
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The group SU(n, 1)

The isometry group of �., .� acts as the isometry group of Hn
C.

1 An isometry is elliptic if it fixes at least one point on H
n
C.

2 An isometry is loxodromic or hyperbolic if it fixes exactly two
points of ∂Hn

C.

3 An isometry is parabolic if it fixes exactly one point of ∂Hn
C.

Goldman classified these isometries algebraically in SU(2, 1). In a
joint work with Parker and Parsad, we have generalized Goldman’s
result for SU(p, q). In particular, this gives a complete algebraic
classification for SU(3, 1), the group of our interest in this talk!
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Character Varieties

Let Γ = �γ1, ..., γr | R� be a finitely generated discrete group
(with relations R) and G a connected Lie group.

The set of homomorphisms Hom(Γ,G ) naturally sits inside G r

via the evaluation map: ρ �→ (ρ(γ1), ..., ρ(γr )). Therefore,
Hom(Γ,G ) inherits the subspace topology.

Define Hom(Γ,G )∗ to be all ρ in Hom(Γ,G ) such that the
conjugation orbit of ρ is closed. Such points are called
polystable.

The G -character variety of Γ is then the conjugation orbit
space X(Γ,G ) := Hom(Γ,G )∗/G .

Our interest: Γ = F2, G = SL(4,C) and SU(3, 1)
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Algebraic Topology of X(Γ,G )

When G is a complex reductive affine algebraic group,
Hom(Γ,G ) is an affine variety:

cut out of the product variety
G r by the words in R .

Theorem: [Florentino-Lawton], [Luna]
X(Γ,G ) is homeomorphic to the geometric points (with the
Euclidean topology on an affine variety) of the Geometric
Invariant Theory (GIT) quotient
Hom(Γ,G )//G := Spec(C[Hom(Γ,G )]G ), where
C[Hom(Γ,G )]G is the ring of G -invariant polynomials in the
coordinate ring C[Hom(Γ,G )].

(Florentino-Lawton-Ramras) The GIT quotient with this
topology is homotopic to the non-Hausdorff quotient space
Hom(Γ,G )/G .
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Ring of Invariants

Let F+
r be the free non-commutative monoid generated by symbols

{x1, ..., xr}. Let M+
r be the monoid generated by {x1, x2, ..., xr},

where xk = (xkij ) are matrices in rn2 indeterminates.

There is a surjection F+
r → M+

r , defined by mapping xi �→ xi . Let
w ∈ M+

r be the image of w ∈ F+
r under this map.

Let | · | be the function that takes a cyclically reduced word in Fr
to its word length.

(Procesi) The ring of invariants C[gl(n,C)r ]SL(n,C) is generated by

{tr(w) | w ∈ F
+
r , |w| ≤ n

2}. (1)
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The coordinate ring C[X(Fr , SL(n,C))] is equal to
C[SL(n,C)r]SL(n,C).

Since the determinant is conjugation invariant
C[SL(n,C)r]SL(n,C) ∼=

(C[gl(n,C)r ]/∆)SL(n,C) = C[gl(n,C)r ]SL(n,C)/∆,

where ∆ is the ideal generated by the r polynomials det(xk)− 1.

Since the characteristic polynomial allows one to write the
determinant as a polynomial in traces of words, C[X(Fr , SL(n,C))]
is generated by {tr(w) | w ∈ F

+
r , |w| ≤ n

2} as well.
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Some Notations

x
∗
k = (−1)i+j

Cof ji (xk). Let M∗
r be the monoid generated by

{x1, x2, ..., xr} and {x∗1, x∗2, ..., x∗r }.

Let Nr be the normal sub-monoid generated by
{det(xk)I | 1 ≤ k ≤ r}.

Define Mr = M∗
r /Nr .

Now let CMr be the group algebra defined over C with respect to
matrix addition and scalar multiplication in Mr . Likewise, let CM∗

r

be the semi-group algebra of the monoid M∗
r .
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A Non-commutative Diagram

The following diagram (from Lawton’s thesis) forms a bridge
between the non-commutative algebra CMr and the moduli space
X(Fr , SL(n,C)), built in the language of free groups:

F+
r −−−−→ Fr�

�

CM+
r −−−−→ CMr

tr−−−−→ C[X(Fr , SL(n,C))].

This relationship has been exploited to obtain many geometric
results in the case n = 3.

In particular, the relationship to the
non-commutative algebra was used by Lawton to completely
describe the coordinate ring of X(F2, SL(3,C)).
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X(F2, SL(3,C))

(Lawton) X(F2, SL(3,C)) is generated by:

tr(x), tr(y), tr(xy−1), tr(x−1), tr(y−1),

tr(x−1
y
−1), tr(x−1

y), tr([x, y]),

where [x, y] = x
−1

y
−1

xy.

As a consequence of this result, we have the following for SU(2, 1).

(Will, Wen) X(F2, SU(2, 1)) is generated by:

tr(x), tr(y), tr(xy), tr(x−1
y), tr([x, y]).

Parker and Platis proved a special case:

(Parker & Platis) A pair of loxodromic elements in SU(2, 1) is
determined up to conjugacy by their traces and a point on the
cross ratio variety corrresponding to these elements.
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Partial Generalization of Parker-Platis for SU(3, 1)

A pair (A,B) of loxodromics in SU(3, 1) is called non-singular if

(i) A and B are loxodromics without a common fixed point and the
fixed points of A and B do not lie on a common C2-chain.
(ii) The fixed point set of A is disjoint from at least one of the
C2-chains polar to the positive eigenvectors of B and, the fixed
point set of B is disjoint from at least one of the C2-chains polar
to the positive eigenvectors of A.

Theorem. (G. - Parsad) Let ρ : F2 → SU(3, 1) be a
representation such that ρ(m), ρ(n) are loxodromic and generate a
non-singular subgroup of SU(3, 1). Then for some i , j ∈ {1, 2},
there exists two non-zero complex parameters αi and βj such that
these, along with coefficients of the characteristic polynomials of
ρ(m), ρ(n) and a point on the cross-ratio variety, completely
determine ρ up to conjugacy.

Here α1, α2, β1, β2 are ‘cross-ratios’ with three null vectors and
one positive-type eigenvector.
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Generating Set for X(F2, SL(4,C))

Word Length Generator
1 tr(x), tr(y)
2 tr(x2), tr(xy), tr(y2)
3 tr(x3), tr(x2y), tr(xy2), tr(y3)
4 tr(x4), tr(x3y), tr(x2y2), tr(xy3), tr(y4), tr(xyxy)
6 tr((x2y)2), tr((y2x)2)

Table: G1

Word Length Generator
5 tr(x3y2), tr(y3x2)
6 tr(x2y2xy), tr(y2x2yx)
7 tr(x3y2xy), tr(y3x2yx)
8 tr(x3y2x2y), tr(y3x2y2x), tr(x3y3xy), tr(y3x3yx)
9 tr(x3yx2yxy), tr(x2y2xyx2y),

tr(y2x2yxy2x), tr(y3xy2xyx)
10 tr(x3y3x2y2)

Table: G2

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs



Generating Set for X(F2, SL(4,C))

Word Length Generator
1 tr(x), tr(y)
2 tr(x2), tr(xy), tr(y2)
3 tr(x3), tr(x2y), tr(xy2), tr(y3)
4 tr(x4), tr(x3y), tr(x2y2), tr(xy3), tr(y4), tr(xyxy)
6 tr((x2y)2), tr((y2x)2)

Table: G1

Word Length Generator
5 tr(x3y2), tr(y3x2)
6 tr(x2y2xy), tr(y2x2yx)
7 tr(x3y2xy), tr(y3x2yx)
8 tr(x3y2x2y), tr(y3x2y2x), tr(x3y3xy), tr(y3x3yx)
9 tr(x3yx2yxy), tr(x2y2xyx2y),

tr(y2x2yxy2x), tr(y3xy2xyx)
10 tr(x3y3x2y2)

Table: G2

Krishnendu Gongopadhyay (joint work with Sean Lawton) Conjugation classes of pairs



Djoković, and independently, Drensky and Sadikova showed that
G1 ∪ G2 is a minimal system of 32 generators for
C[gl(4,C)2//SL(4,C)], where G1 is a system of parameters (in
particular, a maximal algebraically independent set). We could
improve this number by two for C[X(F2, SL(4,C))].

Theorem

(G. - Lawton) G1 ∪ G2 − {tr(x4), tr(y4)} is a minimal system of
30 generators for C[X(F2, SL(4,C))], where G1 − {tr(x4), tr(y4)}
is a maximal set of 15 algebraically independent elements.
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Lemma

Let G generate C[X(Fr , SL(4,C))] and suppose tr(ux3v) is in G. Then
G ∪ {tr(ux−1

v)}− {tr(ux3v)} remains a generating set as long as tr(x),
tr(x2), tr(x−1), tr(uv), tr(uxv), and tr(ux2v) are in the subring
generated by G − {tr(ux3v)}.

Proof.

The characteristic polynomial for SL(4,C) is:

x
4 − tr(x)x3 +

�
tr(x)2 − tr(x2)

2

�
x
2 − tr(x−1)x+ I = 0.

Multiplying through on the left by a word u and on the right by x
−1

v for
a word v gives:

ux
3
v − tr(x)ux2v +

�
tr(x)2 − tr(x2)

2

�
uxv − tr(x−1)uv + ux

−1
v = 0.

Therefore, taking traces of both sides of this latter equation, we have the
lemma.
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Let τ be the involutive outer automorphism that permutes x and y and
let ι be the involutive outer automorphism that sends x �→ x

−1 and
y �→ y

−1. Clearly τ and ι act on X(F2, SL(4,C)) and its coordinate ring.

Corollary

S ∪ τ(S) ∪ {tr(x−1
y
−1

x
2
y
2)} is a minimal set of 30 generators for

C[X(F2, SL(4,C))], where,

Word Length Generator
1 tr(x)
2 tr(x2), tr(xy)
3 tr(x−1), tr(xy−2)
4 tr(x−1

y), tr(x2y2), tr(xyxy)
5 tr(x−1

y
2)

6 tr((x2y)2), tr(x2y2xy)
7 tr(x−1

y
2
xy)

8 tr(x−1
y
2
x
2
y), tr(x−1

y
−1

xy)
9 tr(x−1

yx
2
yxy), tr(x2y2xyx2y)

Table: S
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Generating set for C[X(F2, SU(3, 1))]

Theorem

(G. - Lawton) The following 22 traces determine any (polystable)
pair �A,B� up to conjugation where A,B ∈ SU(3, 1):

Word Length Generator
1 tr(x), tr(y)
2 tr(x2), tr(xy), tr(y2), tr(x−1

y)
3 tr(xy2), tr(yx2)
4 tr(x2y2), tr(xyxy), tr(x−1

y
−1

xy)
5 tr(x−1

y
2
xy), tr(y−1

x
2
yx)

6 tr((x2y)2), tr((y2x)2), tr(x2y2xy), tr(x−1
y
−1

x
2
y
2)

tr(y2x2yx), tr(x−1
y
2
x
2
y), tr(y−1

x
2
y
2
x)

7 tr(x−1
yx

2
yxy), tr(y−1

xy
2
xyx)
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Thank You!
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