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Lecture 3: Riemann-Hilbert problem and applications

In this lecture we will discuss the existence of approximate solutions to
Riemann-Hilbert type boundary value problem for conformal minimal
immersions M→ Rn (M a bordered Riemann surface, n ≥ 3), and use
them to construct complete bounded minimal immersions M→ Rn,
embeddings if n ≥ 5.

Based on joint work with

• Barbara Drinovec Drnovšek and Franc Forstnerič, University of
Ljubljana.

• Francisco J. López, University of Granada.

[A. Alarcón, F. Forstnerič: Every bordered Riemann surface is a complete
proper curve in a ball. Math. Ann., 2013]
[A. Alarcón, F. Forstnerič: The Calabi-Yau problem, null curves, and
Bryant surfaces. Math. Ann., in press]
[A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J. López: Every
bordered Riemann surface is a complete conformal minimal surface
bounded by Jordan curves. Proc. London Math. Soc., in press]



The classical Riemann-Hilbert problem

Let f : D→ Cn be a C 0 map that is holomorphic in D. Let

g : bD×D→ Cn

be a C 0 map such that g(ξ, ·) is holomorphic in D and g(ξ, 0) = f (ξ)
for every ξ ∈ bD.

Let K ⊂ D be a compact set and let ε > 0.

Problem: Find a C 0 map φ : D→ C, holomorphic in D, such that:

• φ is ε-close to f over K .

• φ(ξ) is ε-close to the curve g(ξ, bD) for every ξ ∈ bD.

The model case: n = 2, f (ξ) = (ξ, 0) and g(ξ, ζ) = (ξ, ζ). A solution
is φ(ξ) = (ξ, ξN ) for large N ∈N.

2007 Drinovec Drnovšek and Forstnerič Solutions exist even when the
source manifold D is replaced by any bordered Riemann surface and
the target manifold Cn by an arbitrary complex manifold.

The Riemann-Hilbert method is useful in a variety of problems; in
particular for constructing proper curves.



Riemann-Hilbert method for conformal minimal immersions

Theorem

Let M be a compact bordered Riemann surface and let X : M→ Rn

(n ≥ 3) be a conformal minimal immersion (the central surface).
Let I be a compact subarc of bM which is not a connected component of
bM. Choose a small annular neighborhood A ⊂M of the component C
of bM containing I and a smooth retraction ρ : A→ C .
Let u, v ∈ Rn be a couple of unitary orthogonal vectors (the direction
vectors), let µ : C → R+ be a continuous function supported on I (the
size function), and consider the continuous map

κ : bM×D→ Rn

κ(x , ξ) =

{
X(p); p ∈ bM \ I
X(p) + µ(p)

(
<ξu +=ξv

)
, p ∈ I .



Riemann-Hilbert method for conformal minimal immersions

Theorem (Continued)

Then for any number ε > 0 there exist an arbitrarily small open
neighborhood Ω of I in A and a conformal minimal immersion
Y : M→ Rn satisfying the following properties:

• Y is ε-close to X in the C1 topology on M \Ω.

• dist(Y(p),κ(p, bD)) < ε for all p ∈ bM.

• dist(Y(p),κ(ρ(p), D)) < ε for all p ∈ Ω.

• FluxY = FluxX.

• We do not change the conformal structure on M.

• I can be replaced by a finite family of pairwise disjoint compact
subarcs; it is allowed to use different direction vectors in each subarc.

• The boundary discs can be arbitrary planar discs (non-necessarily
round) in parallel planes, and in case n = 3 they can be arbitrary
minimal discs (non-necessarily planar).



The spinor representation of the null quadric in C3

Recall the null quadric

A∗ =
{

z = (z1, . . . , zn) ∈ Cn :
n

∑
j=1

z2j = 0
}
\ {0}

directing conformal minimal immersions M→ Rn.

If n = 3, the complex cone A = A∗ ∪ {0} admits a spinor
representation:

π : C2 → A, π(a, b) = (a2 − b2, ı(a2 + b2), 2ab).

The map
π : C2 \ {(0, 0)} → A∗

is a nonramified two-sheeted covering.



The Riemann-Hilbert method - Proof for n = 3

We first consider the case M = D.

A∗ = {(a2 − b2, ı(a2 + b2), 2ab) ∈ C3 : (a, b) ∈ C2 \ {(0, 0)}}

X′ =
(
a2 − b2, ı(a2 + b2), 2ab

)
: D→ A∗ ⊂ C3

u− ıv =
(
p2 − q2, ı(p2 + q2), 2pq

)
∈ A∗

η =
√

µ : bD = S1 → R+

η(ζ) ≈ η̃(ζ) =
N

∑
j=1

Aj ζ
j−m (rational approximation on C \ {0})

ak (ξ) = a(ξ) +
√

2k + 1 η̃(ξ) ξkp (k > m, uk (0) = u(0))

bk (ξ) = b(ξ) +
√

2k + 1 η̃(ξ) ξkq (vk (0) = v(0))

Φk =
(
a2k − b2k , ı(a2k + b2k ), 2akbk

)
: D→ A∗

Yk (ζ) = X(0) + Re
( ∫ ζ

0
Φk (ξ) dξ

)
, ζ ∈ D.

It follows that Yk (ζ) ≈ X(ζ) + µ(ζ)
(
Re(ζ2k+1)u + Im(ζ2k+1)v). Take

Y = Yk for large enough k ∈N.



The Riemann-Hilbert method - Proof for n = 3

Furthermore, if I is a compact arc in bD, the size function µ vanishes
everywhere on bD \ I , and U is an open neighborhood of I in D, then
one can choose Y to be ε-close to X in the C 1 topology on D \ U.



The Riemann-Hilbert method - Proof for n = 3

Assume now that M is any compact bordered Riemann surface.

• Solve the problem in a small disc D ⊂ Ω ⊂M \ A containing I . (We
have just proved that we may.) Call Y0 : D → R3 the solution.

• Let ϑ be a nowhere vanishing holomorphic 1-form on M and write

∂Y0 = g0ϑ, g0 : D → A∗,

∂X = f0ϑ, f0 : M→ A∗.

Observe that
∫

γ f0ϑ = ıFluxX(γ) for every γ ∈ H1(M; Z).

• Embed f0 as the core map of a dominating and period-dominating
holomorphic spray of holomorphic maps{

ft : M→ A∗
}
t∈B .

• Embed g0 as the core map of a dominating spray of holomorphic maps{
gt : D → A∗

}
t∈B , 0 ∈ B ⊂ CN (large enough N),

such that gtϑ provide by integration approximate solutions to the
Riemann-Hilbert problem in D.



The Riemann-Hilbert method - Proof for n = 3

• Glue the two (dominating) sprays {ft}t∈B and {gt}t∈B into a single
spray of holomorphic maps{

ht : M→ A∗
}
t∈B

such that ht is close to gt on D and to ft on M \D.

• Since f0θ has no real periods and the spray ft is period dominating, so
is ht provided the approximation is close enough. Hence the period
map

B 3 t 7→ P(ht) =
( ∫

γ
htϑ
)

γ∈H1(M;Z)

has maximal rank at t = 0. The Implicit Function Theorem gives
t0 ∈ B close to 0 such that

∫
γ ht0ϑ =

∫
γ f0ϑ = ıFluxX(γ) for every

γ ∈ H1(M; Z)

• Fix a point p0 ∈M \D. The map Y : M→ R3,

Y(p) = X(p0) +<
∫ p

p0
ht0ϑ

proves the theorem.



The Riemann-Hilbert method - Proof

The proof in general dimension n ≥ 4 consists on reducing the problem
to dimension 3.

The proof for non-round boundary disc (arbitrary minimal discs if n = 3)
uses conformal parameterizations.



Calabi’s Conjecture

1963 Calabi’s Conjecture Complete nonplanar minimal surfaces in R3 have
no bounded coordinate function.

In particular, there is no complete bounded minimal surface in R3.

1980 Jorge-Xavier There exists a complete minimal surface contained in a
slab of R3.

1996 Nadirashvili There exists a complete minimal surface contained in a
ball of R3.



Nadirashvili’s technique

Xn : D→ BRn
conformal minimal immersion

• ‖Xn − Xn−1‖ ≈ 0 in D1−1/n.

• distdsXn (0, ∂D) ≈
n

∑
k=1

1

k
.

• Rn ≈
√

n

∑
k=1

1

k2
.

⇓

{Xn} → X : D→ R3

complete bounded
minimal immersion
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Nadirashvili’s technique

Key tools: Runge’s Theorem and the López-Ros transformation for
conformal minimal immersions:

X = (X1, X2, X3) (g , φ3) 7→ (hg , φ3) Y = (Y1, Y2, Y3 = X3)



The Calabi-Yau problem

2000 Yau What is the geometry of complete bounded minimal surfaces in
R3?

Jorge-Xavier’s and Nadirashvili’s method do not provide any control on
the self-intersections of the examples.

2008 Colding-Minicozzi A complete finitely-connected embedded minimal
surface in R3 must be proper in R3.

Meeks-Pérez-Ros Extension for surfaces of finite genus and
countably many ends.

Nadirashvili’s method does not provide any information on the conjugate
surface of the examples.

Theorem
There exist complete bounded embedded null holomorphic curves in
C3.

[A. Alarcón, F.J. López: Null curves in C3 and Calabi-Yau conjectures.
Math. Ann. 2013]
[A. Alarcón, F. Forstnerič: Null curves and directed immersions of open
Riemann surfaces. Invent. Math. 2014]



The conformal Calabi-Yau problem
Nadirashvili’s method works for surfaces of finite topology

, but it does
not enable one to control the conformal structure of the examples.

2012 Ferrer-Mart́ın-Meeks There exist complete bounded minimal surfaces
in R3 with arbitrary topology.
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The conformal Calabi-Yau problem

Q. Which open Riemann surfaces are the conformal structure of a

complete bounded minimal surface in R3?

Theorem
Every bordered Riemann surface carries a complete bounded null
holomorphic immersion into C3 and hence a conformal complete minimal
immersion into R3 with bounded image.

[A. Alarcón, F. Forstnerič: Null curves and directed immersions of open
Riemann surfaces. Math. Ann., in press]



Local theory: Plateau Problem

1873 Plateau Minimal surfaces can be physically obtained as soap films.

1931 Douglas, Radó Every continuous injective closed (i.e. Jordan) curve
in Rn (n ≥ 3) spans a minimal surface.



The asymptotic Calabi-Yau problem

There is not much information about the (global) properties of solutions
to Plateau Problems.
The solution surface for a rectifiable Jordan curve is NOT complete by
the isoperimetric inequality for minimal surfaces.

Nadirashvili’s method does not provide any information on the
asymptotic behavior of the examples.

Q. Are there complete minimal surfaces in R3 bounded by Jordan
curves?

Equivalently,

Are there Jordan curves in R3 spanning complete minimal
surfaces?

Q. Which domains in R3 are the natural containers of complete
proper minimal surfaces?



Higher dimension

Nadirashvili’s method does not apply for surfaces in Rn, n ≥ 4.
(The López-Ros transformation is not available.)



Main Theorem

Theorem

Let M = M̊∪ bM be a compact bordered Riemann surface.

Every conformal minimal immersion X : M→ Rn (n ≥ 3) of class
C1(M) can be uniformly approximated in the C0(M)-topology by

continuous maps X̃ : M→ Rn such that:

• X̃|M̊ : M̊→ Rn is a conformal complete minimal immersion (with
bounded image).

• X̃|bM : bM→ Rn is an embedding. In particular, X̃(bM) ⊂ Rn is a
finite collection of pairwise disjoint Jordan curves.

Furthermore, if n ≥ 5 then X̃ can be taken to be an embedding.

This is an existence result.

[A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J. López: Every
bordered Riemann surface is a complete conformal minimal surface
bounded by Jordan curves. Preprint 2015]



Our result

Corollary

Every finite collection of pairwise disjoint Jordan curves in Rn admitting
a connected solution to the Plateau Problem also admits approximate
solutions by complete minimal surfaces.

Not every finite family of Jordan curves admits a connected solution to
the Plateau problem.



Proof of the Theorem

Lemma (Key Lemma)

Let M be a compact bordered Riemann surface. Let X : M→ Rn

(n ≥ 3) be a conformal minimal immersion of class C1(M), let
f : bM→ Rn be a smooth map, and let δ > 0 be a number. Assume that

‖X− f‖0,bM < δ.

Fix a point p0 ∈ M̊.

Then for each η > 0 the immersion X can be approximated uniformly on

compacts in M̊ by conformal minimal immersions X̃ : M→ Rn of class
C1(M) satisfying the following properties:

(a) distX̃(p0, bM) > distX(p0, bM) + η.

(b) ‖X̃− f‖0,bM <
√

δ2 + η2.



Proof of the Theorem via the Key Lemma

Applying the lemma in a (finite) recursive way to the data

Xj , f = X|bM, η =
ε

j
,

and taking into account the Maximum Principle, we get (note that

∑j
1
j = +∞ and ∑j

1
j2

< +∞.)

Lemma
Let M be a compact bordered Riemann surface and p0 ∈M.

Every conformal minimal immersion X : M→ Rn (n ≥ 3) of class
C1(M) can be approximated in the C0(M)-topology by conformal

minimal immersions X̃ : M→ Rn of class C1(M) such that
distX̃(p0, bM) is as large as desired.

Main Theorem follows from a recursive application of this lemma (and
the General Position Theorem if n ≥ 5).



Proof of the Key Lemma

Lemma (Key Lemma)

Let M be a compact bordered Riemann surface. Let X : M→ Rn
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√

δ2 + η2.



Proof of the Key Lemma

• By general position we may assume that

X(p)− f(p) 6= 0 for all p ∈ bM.

• The key idea is to push the X-image of each point p ∈ bM a distance
approximately η in a direction approximately orthogonal to the vector
X(p)− f(p) ∈ Rn. Conditions (a) and (b) will then follow from
Pythagoras’ Theorem.

• However, this procedure by itself will likely create shortcuts in the new
induced metric. Hence we divide bM to finitely many very short arcs
I1, . . . , Ik so that both f and X vary very little on each lj when
compared to the size of η (the desired displacement).

• At each of the endpoints xj = X(pj ) of these arcs we attach to
X(M) ⊂ Rn a smooth arc λj which remains near xj , but is spinning
fast and has long projection on each line spanned by one of the vectors
X(pi )− f(pi ).



Proof of the Key Lemma

• Using the Mergelyan theorem for conformal minimal immersions and
the method of exposing boundary points by Forstnerič and Wold,
we modify X so that it follows the arc λj and X(pj ) = qj is the other
endpoint of λj . Hence any curve in M terminating on bM near pj is
elongated a lot, at least more than η.

• To this new X we apply the Riemann-Hilbert method to find a
conformal minimal immersion X̃ which at a interior point x ∈ Ij adds a
displacement for approximately η in a direction approximately
orthogonal to the vector X(pj )− f(pj ) ∈ Rn.

• The intrinsic boundary distance in X̃(M) increases by approximately η,
proving (a), whereas by Pythagoras

|X̃(p)− f(p)| ≈
√
|X(p)− f(p)|2 + η2 ≤

√
δ2 + η2 for all p ∈ bM.

This bound also holds for all p ∈M by the Maximum Principle, which
proves (b).



Proper minimal surfaces in convex domains

The same tools are used to prove the following results on proper
complete conformal minimal immersions.

Theorem

Let D be a convex domain in Rn for asome n ≥ 3, and let M be a
compact bordered Riemann surface.

(a) Every conformal minimal immersion X : M→ D of class C 1(M) can
be approximated, uniformly on compacts in M̊ = M \ bM, by

conformal complete proper minimal immersions X̃ : M→ D.

(b) If n ≥ 5 then X̃ can be chosen an embedding.

(c) If D has smooth strongly convex boundary then X̃ can be chosen
continuous on M.

In the proof we alternately apply the above Lemma (to enlarge the
intrinsic boundary distance) and the Riemann-Hilbert method.

2012 Ferrer-Mart́ın-Meeks Every convex domain in R3 carries complete
proper minimal surfaces with arbitrary topology.



Mean-convex domains in R3

Let D be a domain in R3 with C 2 boundary. Denote by κ1(x) and κ2(x)
the principal curvatures of bD from the interior side at x ∈ bD.

Definition

A domain D ⊂ R3 with C 2 boundary is said to be mean convex if
κ1(x) + κ2(x) ≥ 0 holds for every x ∈ bD. The domain D is strongly
mean convex if κ1(x) + κ2(x) > 0 for every x ∈ bD.

Example: C 2 convex domains are mean-convex but the converse is not
true.

Example: A domain D ⊂ R3 bounded by an embedded minimal surface
Σ = bD ⊂ R3 is mean-convex since in this case κ1(x) + κ2(x) = 0 for
every x ∈ Σ.



Complete proper minimal surfaces in mean-convex domains

Theorem

Let D be a mean-convex domain in R3 with C 2 boundary and let M be
a compact bordered Riemann surface.

Every conformal minimal immersion X : M→ D of class C 1(M) can be
approximated, uniformly on compacts in M̊ = M \ bM, by conformal

complete proper minimal immersions X̃ : M̊→ D.

If D is bounded and strongly mean-convex then X̃ can be chosen
continuous on M.

This is the first general existence result for complete proper minimal
surface in domains in R3 which are not convex.

[A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J. López: Work in
progress]
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