
COMPLEX DYNAMICAL SYSTEMS

HAN PETERS

1. Introduction to Fatou components

The goal in this course is to present some recent results in higher dimensional
holomorphic dynamics. In order to be able to appreciate these results, one needs
to have seen a certain amount of one-dimensional dynamics. Hence we will start by
looking at the one-dimensional setting. We will only present detailed proofs in the
direction that we will take in higher dimensions.

Let X be a complex manifold, f : X → X holomorphic. What can we say about
the orbits z0, f(z0), f2(z0), . . .? A central question for us will be: how do the orbits
vary when the initial value z0 is perturbed.

Example 1. Let f : Ĉ → Ĉ be given by f(z) = zd, for some d ≥ 2. The point
0 = f(0) is fixed, and the orbits of all nearby points converge to the origin, since
|f ′(0)| = 0 < 1. The situation is stable. The other fixed point is 1 = f(1).
However, as f ′(1) = d > 1, the orbit of any nearby initial value will escape a small
neighborhood of 1. The situation is unstable.

Let us be more precise about stability. For the next definition we assume that
there exists a metric d(·, ·) on X.

Definition 2. An initial value z0 lies in the Fatou set Ff if for all ε > 0 there exists
a δ > 0 such that d(w0, z0) < δ implies that d(wn, zn) < ε for all n ∈ N.

In other words, the family {fn} is equicontinuous in the point z0. For holomor-
phic maps this implies equicontinuity in a neighborhood U of z0, which is equivalent
to the condition that every sequence (fnj |U ) has a convergent subsequence. Here
the topology used is the compact-open topology, and convergence means uniform
convergence on compact subsets.

Definition 3. The Julia set is the complement of the Fatou set, Jf := X \ Ff .

The following questions are central in holomorphic dynamics.

(1) Describe the behavior of orbits on Jf .
(2) Describe the behavior of orbits on Ff .
(3) How do natural invariant sets such as Jf and Ff vary when the map f is

perturbed.

It turns out that in order to understand the third question a good understanding
of the previous two questions is needed. This is for obvious reasons, if you do not
understand the sets J and F then it is unlikely that you can determine how these
sets will vary as the parameters vary. It turns out that understanding question
(3) can also help to understand the answers to questions (1) and (2), although
this is more subtle. A classical example can be found in the works of Shishikura
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and Buff-Cheritat, who proved that there exist polynomials whose Julia sets have
Hausdorff measure 2, resp. positive Lebesque measure. A more recent example is
the construction of wandering Fatou components for polynomials in two complex
variables.

The first two questions are closely related, and one rarely studies the Fatou set
without using properties of the Julia set. In this course we will mostly focus on the
second question.

We will mostly consider rational maps. Of course there are many other inter-
esting dynamical systems, also in the holomorphic category. In fact transcendental
dynamics has received significant attention in the literature. However, it is impor-
tant to note that it is almost impossible to prove anything of substance about very
large classes of maps, such as all entire maps, or all holomorphic automorphisms of
C2. These classes are too large to study their dynamics (unless one wants to show
that specific behavior can occur for some maps, then having a large class of maps
is of course an advantage).

In the one-dimensional setting, the Riemann surface Ĉ = C∪{∞} is a particularly
pleasant space to study the dynamics. The dynamical behavior of holomorphic
endomorphisms is much richer there than in any other compact Riemann surface.

Homework 1. Prove that all holomorphic endomorphisms of Ĉ are rational.

Homework 2. Describe the behavior of affine maps z 7→ az + b. What are the
Fatou and Julia sets?

The family of quadratic polynomials is one of the most studied dynamical sys-
tems. Note that we can conjugate any quadratic polynomial to a polynomial of the
form f(z) = z2+c. Another popular form is z 7→ kz(1−z), which is called a logistic
map. Of course one can easily change coordinates from one form to another. The
advantage of the form f(z) = z2 + c is that it stresses the importance of the critical
point z = 0, the point where the derivative vanishes, and the critical value c. We
will see many examples this week that highlight the important role of the critical
point in complex dynamical systems.

Homework 3. Prove that a rational function of degree d has 2d−2 critical points,
counting multiplicity.

For a polynomial of degree d the point∞ always is a critical point of order d−1,
meaning that the derivative vanishes at∞ with order d−1. Hence there are exactly
d− 1 critical points in the complex plane, counting with multiplicity as always.

Let us look at a particular example of a quadratic polynomial. We will not choose
the parameter c = 0, because besides being rather boring, the polynomial f(z) = z2

is also quite different from any other polynomial z2 + c. It will be important for us
to know what happens to the orbit of the critical point 0. Let us therefore take an
easy example where 0 is a periodic point. The period 1 case gives the map we do
not want, so let us take a higher order, for example order 3. Now we need to solve
the equation

f3c (0) = 0,

which is a (real) degree 4 polynomial in c, hence has 4 solutions. There are two real
solutions, one of which is 0. There is also a pair of complex solutions. Let us pick
one of these complex solutions, simply because the picture is nicer (at least I think
so). See Figure 1.
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Figure 1. z 7→ z2 + c

What do we see in this picture? The region depicted in black (and dark grey)
can be regarded as the basin of attraction of the fixed point at infinity,

I∞ = {z ∈ C | fn(z)→∞}.

Note that for any polynomial there exists a constant R > 0 such that if |z| ≥ R then
|f(z)| ≥ 2|z|. It follows that if an orbit at any point leaves the disk of radius R,
then it must converge to infinity. The constant R is often called the escape radius,
although of course it is not unique. Drawing the black (grey) region by computer is
easy. Choose coordinates for each pixel and iterate until the orbits leaves the disk
∆(R). The grey scale shows how many steps it takes to leave this disk. If the orbit
has not left the disk after a large number of iterates then we do not color it grey.
For a sufficiently large number of iterates this gives a very good approximation of
I∞.

The complement of I∞ is denoted by K,

K := {z ∈ C | {fn(z)} is bounded}.

Since I∞ is open, the set K is closed. Both sets are completely invariant under f .

Homework 4. Prove that J = ∂K, and F = K◦ ∪
(
Ĉ \K

)
.

In the picture it appears that K is depicted in green, red and blue. This is almost
true, but not quite. Note that 0 7→ c 7→ f(c) 7→ 0. The derivative of f3 at each of
these three points is 0.
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Lemma 4. Let f(p) = p and suppose that |f ′(p)| < 1. Then there is a neighborhood
U(p) such that the orbit of any point in U converges to p. Conversely, suppose that
U ⊂ C is open and that f(U) is a relatively compact subset of U . Then there is a
point p ∈ U with |f ′(p)| < 1, and the orbit of any point in U converges to p.

Homework 5. Prove the above lemma.

The points 0, c and f(c) are attracting fixed points for f3, hence {0, c, f(c)} is
an attracting periodic cycle for f . The attracting basin for f3 of the point 0 is
depicted in red, for c in blue, and for f(c) in green. Together they form the basin
A of the attracting periodic cycle of f . Note that A is again completely invariant,
i.e. f−1(A) = A.

Let us write A0 for the connected component of A that contains 0, and write
A1 = f(A0) and A2 = f(A1).

Homework 6. Prove that the components A0, A1 and A2 are distinct, and thus
disjoint.

The maps f : A1 7→ A2 and f : A2 7→ A0 are locally injective (since the critical
point is not contained in A0). By the Maximum Principle these components are
simply connected. It follows that the restriction of f to either A1 or A2 is injective.
The map f : A0 → A1 is not injective but 2 : 1, except that c has only 1 inverse
image.

Since the polynomial f has degree 2, it follows from the above discussion that
the components A2 and A0 each must have another pre-image. Each of these new
components must also have two pre-images, and so on. It follows that the set A
consists of countably many distinct connected components. The combinatorial data
of these connected components gives us a complete description of all possible orbits
of f .

Claim 1. K◦ = A.

Claim 2. ∂A = J = ∂”red set” = ∂”blue set” = ∂”green set”.

Claim 3. Define the sets A−n for n ∈ N recursively so that f(A−n) = A−n+1, and
A−3 6= A0. Then diam(A−n)→ 0.

Before we prove these three claims, it is worth noting that while we are looking at
a very specific polynomial, these properties hold in much greater generality. Indeed,
they follow from some very general results.

It is immediately clear that Area(A−n) → 0, since the sets A−n are pairwise
disjoint and are all contained in ∆(R). Claim 3 is of course strictly stronger. How
do we prove this claim? Note again that each component A−n is simply connected
and does not contain critical points. Therefore the map f : A−n → A−n+1 is
injective, and thus fn : A−n → A0 is also univalent. Therefore we can consider
the inverse branches f−n : A0 → A−n, which are of course also univalent, and
bounded since the images are contained in ∆(R). Hence these inverse branches
form a normal family, and any sequence of these inverse branches must have a
convergent subsequence, uniformly on compact subsets of A0. Since all the images
A−n are pairwise disjoint, it follows that the image of any limit map h = lim f−nj

must be a single point. After all, h must be holomorphic, and h(A0) cannot have
any interior points. If it did, then some (open) set A−n would intersect an interior
point of h(A0), in which case that point could never be approximated by points in
other sets A−m.
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Now we wish to conclude from the fact that any limit set h(A0) consists of a single
point, that the diameter of the sets A−n must converge to zero. We could conclude
this immediately if the convergence was uniform. However, the convergence is only
uniform, it is only uniform on compact subsets. This is not sufficient to conclude
that the diameters of A−n converge to zero. It is possible that the sets A−n become
very thin but long. How can we prove that this does not happen?

Definition 5. We say that a polynomial f is hyperbolic if some iterate fN acts
expandingly on the Julia set J .

Expanding means that |f ′(z)| > 1 for any z ∈ J . By compactness of J it follows
that there exists a µ > 1 such that |f ′(z)| > µ for any z ∈ J . An equivalent
definition of hyperbolicity is that there exists a metric on J with respect to which
f is uniformly expanding.

A clear example of a hyperbolic polynomial is the map z 7→ z2. The Julia set of
this map is the unit circle, where the derivative has constant norm 1. It turns out
that the polynomial fc that we have been considering is also hyperbolic. Therefore
it is also uniformly expanding in a given neighborhood of the Julia set. If the sets
An get sufficiently thin then they must be contained in this neighborhood of J . But
then the branches of f−1 that we are considering are uniform contractions on the
closure of the sets A−n, from which it follows that the diameters of A−n converge
to zero.

Looking back we notice that we actually did not need to go through the normality
argument. The fact that the area convergence to zero is enough in combination
with the univalence and the hyperbolicity. These two ingredients, the normality
argument and the hyperbolicity, will however play a crucial role in what will come
later in the course.

2. A short section on Equilibrium measures

Take any point z ∈ Ĉ \ {∞}, and define the probability measures

µn =
1

2n

∑
fn(w)=z

δw.

As usual we need to sum over all w counting multiplicities.
One can show that the measures µn converge weakly to a probabily measure µ

which is independent of the chosen point z. The measure µ is called the equilibrium
measure of f . It if invariant under f and supp(µ) = J . Many other natural
constructions lead to the same measure µ, and this measure plays an important role
in our understanding of one-dimensional complex dynamical systems. The above
construction works for any rational function, except for the exceptional polynomials
conjugate to z 7→ zd, in which case one should not start with the two completely
invariant critical points.

The construction of the equilibrium measure is due to Brolin (for polynomials,
1965), Lyubich (1982, for rational functions) and Mañé. It has been successfully
generalized to higher dimensional maps, starting with the works of Bedford-Smillie
(for polynomial automorphisms), Sibony-Fornæss (for holomorphic endomorphisms
of projective space), and later for many more maps, for an important part due to
Sibony.
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3. Back to the Fatou set

Our earlier claim 2, stating that the boundary of each of the red, green and blue
sets equals J , follows from the above comment that supp(µ) = J , but there is a
much easier way to prove the claim. Let z ∈ J , and let U be a neighborhood of
z. Then U must contain both red, blue and green points, otherwise the family
of iterates defined on U avoids at least 2 points of C and by Montel’s theorem is
normal. But this would contradict the definition of J .

Our last claim, which was in fact the first claim, states that A = K◦, which is
equivalent to saying that the Fatou set has no other connected components. Con-
nected components of the Fatou set are called Fatou components, and for rational
functions they are very well understood. The proof of the last claim will follow from
the following two theorems.

Theorem 6 (Fatou, Siegel, Herman, Sullivan). Let f : Ĉ→ Ĉ be rational of degree
at least 2, and let U be a Fatou component. Then U is either periodic or pre-periodic.
If U is invariant then U must either be

• Attracting basin the immediate basin of an attracting fixed point p, i.e.
f(p) = p and |f ′(p)| < 1.
• Parabolic basin an immediate basin of a parabolic fixed point p, i.e. f(p) = p

and f ′(p) = 1.
• Siegel disk: equivalent to a disk on which f acts as an irrational rotation.
• Herman ring: equivalent to an annulus on which f acts as an irrational

rotation.

The classification is due to Fatou, but he was not able to decide whether the
third and fourth cases could exist. The existence of Siegel disks was shown by
Siegel in the 1940’s, the existence of Herman rings was shown by Herman in 1979.
In both cases there exists a conformal map ϕ : U 7→ Σ such that φ(f(z)) = λ ·φ(z),
where λ = e2πiθ and θ ∈ R \ Q. Here Σ is either the unit disk (in the Siegel
case) or an annulus (in the Herman case). Note that Herman rings cannot exist for
polynomials. It was shown by Sullivan in 1985 that every Fatou component is either
periodic or pre-periodic. A Fatou component that is not periodic or pre-periodic
is called wandering. For this reason one often refers to Sulivan’s No Wandering
Domains Theorem.

Theorem 7 (Fatou components and critical points). The immediate basin of an
attracting fixed point or attracting parabolic point must contain a critical point. The
boundary of a Siegel disk must be contained in the closure of a critical orbit.

Since for our specific polynomial the critical orbit is a finite (and thus compact)
subset of A0∪A1∪A2 it follows that there can be no invariant Siegel disks, parabolic
basins or other attracting basins. This not only holds for f but also for fn for
any n. Hence there can be no other periodic Fatou components, and it follows
from Sullivan’s No Wandering Domains Theorem that there exist no other Fatou
components, hence A = K◦.
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