
COMPLEX DYNAMICAL SYSTEMS

HAN PETERS

1. Lecture 1: Fatou components in one complex variable

1.1. Introduction to Fatou components. The goal in this course is to present
some recent results in higher dimensional holomorphic dynamics. In order to be
able to appreciate these results, one needs to have seen a certain amount of one-
dimensional dynamics. Hence we will start by looking at the one-dimensional set-
ting. We will only present detailed proofs in the direction that we will take in higher
dimensions.

Let X be a complex manifold, f : X → X holomorphic. What can we say about
the orbits z0, f(z0), f2(z0), . . .? A central question for us will be: how do the orbits
vary when the initial value z0 is perturbed.

Example 1. Let f : Ĉ → Ĉ be given by f(z) = zd, for some d ≥ 2. The point
0 = f(0) is fixed, and the orbits of all nearby points converge to the origin, since
|f ′(0)| = 0 < 1. The situation is stable. The other fixed point is 1 = f(1).
However, as f ′(1) = d > 1, the orbit of any nearby initial value will escape a small
neighborhood of 1. The situation is unstable.

Let us be more precise about stability. For the next definition we assume that
there exists a metric d(·, ·) on X.

Definition 2. An initial value z0 lies in the Fatou set Ff if for all ε > 0 there exists
a δ > 0 such that d(w0, z0) < δ implies that d(wn, zn) < ε for all n ∈ N.

In other words, the family {fn} is equicontinuous in the point z0. For holomor-
phic maps this implies equicontinuity in a neighborhood U of z0, which is equivalent
to the condition that every sequence (fnj |U ) has a convergent subsequence. Here
the topology used is the compact-open topology, and convergence means uniform
convergence on compact subsets.

Definition 3. The Julia set is the complement of the Fatou set, Jf := X \ Ff .

The following questions are central in holomorphic dynamics.

(1) Describe the behavior of orbits on Jf .
(2) Describe the behavior of orbits on Ff .
(3) How do natural invariant sets such as Jf and Ff vary when the map f is

perturbed.

It turns out that in order to understand the third question a good understanding
of the previous two questions is needed. This is for obvious reasons, if you do not
understand the sets J and F then it is unlikely that you can determine how these
sets will vary as the parameters vary. It turns out that understanding question
(3) can also help to understand the answers to questions (1) and (2), although
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this is more subtle. A classical example can be found in the works of Shishikura
and Buff-Cheritat, who proved that there exist polynomials whose Julia sets have
Hausdorff measure 2, resp. positive Lebesque measure. A more recent example is
the construction of wandering Fatou components for polynomials in two complex
variables.

The first two questions are closely related, and one rarely studies the Fatou set
without using properties of the Julia set. In this course we will mostly focus on the
second question.

We will mostly consider rational maps. Of course there are many other inter-
esting dynamical systems, also in the holomorphic category. In fact transcendental
dynamics has received significant attention in the literature. However, it is impor-
tant to note that it is almost impossible to prove anything of substance about very
large classes of maps, such as all entire maps, or all holomorphic automorphisms of
C2. These classes are too large to study their dynamics (unless one wants to show
that specific behavior can occur for some maps, then having a large class of maps
is of course an advantage).

In the one-dimensional setting, the Riemann surface Ĉ = C∪{∞} is a particularly
pleasant space to study the dynamics. The dynamical behavior of holomorphic
endomorphisms is much richer there than in any other compact Riemann surface.

Homework 1. Prove that all holomorphic endomorphisms of Ĉ are rational.

Homework 2. Describe the behavior of affine maps z 7→ az + b. What are the
Fatou and Julia sets?

The family of quadratic polynomials is one of the most studied dynamical sys-
tems. Note that we can conjugate any quadratic polynomial to a polynomial of the
form f(z) = z2+c. Another popular form is z 7→ kz(1−z), which is called a logistic
map. Of course one can easily change coordinates from one form to another. The
advantage of the form f(z) = z2 + c is that it stresses the importance of the critical
point z = 0, the point where the derivative vanishes, and the critical value c. We
will see many examples this week that highlight the important role of the critical
point in complex dynamical systems.

Homework 3. Prove that a rational function of degree d has 2d−2 critical points,
counting multiplicity.

For a polynomial of degree d the point∞ always is a critical point of order d−1,
meaning that the derivative vanishes at∞ with order d−1. Hence there are exactly
d− 1 critical points in the complex plane, counting with multiplicity as always.

Let us look at a particular example of a quadratic polynomial. We will not choose
the parameter c = 0, because besides being rather boring, the polynomial f(z) = z2

is also quite different from any other polynomial z2 + c. It will be important for us
to know what happens to the orbit of the critical point 0. Let us therefore take an
easy example where 0 is a periodic point. The period 1 case gives the map we do
not want, so let us take a higher order, for example order 3. Now we need to solve
the equation

f3c (0) = 0,

which is a (real) degree 4 polynomial in c, hence has 4 solutions. There are two real
solutions, one of which is 0. There is also a pair of complex solutions. Let us pick
one of these complex solutions, simply because the picture is nicer (at least I think
so). See Figure 1.
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Figure 1. z 7→ z2 + c

What do we see in this picture? The region depicted in black (and dark grey)
can be regarded as the basin of attraction of the fixed point at infinity,

I∞ = {z ∈ C | fn(z)→∞}.

Note that for any polynomial there exists a constant R > 0 such that if |z| ≥ R then
|f(z)| ≥ 2|z|. It follows that if an orbit at any point leaves the disk of radius R,
then it must converge to infinity. The constant R is often called the escape radius,
although of course it is not unique. Drawing the black (grey) region by computer is
easy. Choose coordinates for each pixel and iterate until the orbits leaves the disk
∆(R). The grey scale shows how many steps it takes to leave this disk. If the orbit
has not left the disk after a large number of iterates then we do not color it grey.
For a sufficiently large number of iterates this gives a very good approximation of
I∞.

The complement of I∞ is denoted by K,

K := {z ∈ C | {fn(z)} is bounded}.

Since I∞ is open, the set K is closed. Both sets are completely invariant under f .

Homework 4. Prove that J = ∂K, and F = K◦ ∪
(
Ĉ \K

)
.

In the picture it appears that K is depicted in green, red and blue. This is almost
true, but not quite. Note that 0 7→ c 7→ f(c) 7→ 0. The derivative of f3 at each of
these three points is 0.
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Lemma 4. Let f(p) = p and suppose that |f ′(p)| < 1. Then there is a neighborhood
U(p) such that the orbit of any point in U converges to p. Conversely, suppose that
U ⊂ C is an open, connected and bounded, and that f(U) is a relatively compact
subset of U . Then there is a point p ∈ U with |f ′(p)| < 1, and the orbit of any point
in U converges to p.

Homework 5. Prove the above lemma.

The points 0, c and f(c) are attracting fixed points for f3, hence {0, c, f(c)} is
an attracting periodic cycle for f . The attracting basin for f3 of the point 0 is
depicted in red, for c in blue, and for f(c) in green. Together they form the basin
A of the attracting periodic cycle of f . Note that A is again completely invariant,
i.e. f−1(A) = A.

Let us write A0 for the connected component of A that contains 0, and write
A1 = f(A0) and A2 = f(A1).

Homework 6. Prove that the components A0, A1 and A2 are distinct, and thus
disjoint.

The maps f : A1 7→ A2 and f : A2 7→ A0 are locally injective (since the critical
point is not contained in A0). By the Maximum Principle these components are
simply connected. It follows that the restriction of f to either A1 or A2 is injective.
The map f : A0 → A1 is not injective but 2 : 1, except that c has only 1 inverse
image.

Since the polynomial f has degree 2, it follows from the above discussion that
the components A2 and A0 each must have another pre-image. Each of these new
components must also have two pre-images, and so on. It follows that the set A
consists of countably many distinct connected components. The combinatorial data
of these connected components gives us a complete description of all possible orbits
of f .

Claim 1. K◦ = A.

Claim 2. ∂A = J = ∂”red set” = ∂”blue set” = ∂”green set”.

Claim 3. Define the sets A−n for n ∈ N recursively so that f(A−n) = A−n+1, and
A−3 6= A0. Then diam(A−n)→ 0.

Before we prove these three claims, it is worth noting that while we are looking at
a very specific polynomial, these properties hold in much greater generality. Indeed,
they follow from some very general results.

It is immediately clear that Area(A−n) → 0, since the sets A−n are pairwise
disjoint and are all contained in ∆(R). Claim 3 is of course strictly stronger. How
do we prove this claim? Note again that each component A−n is simply connected
and does not contain critical points. Therefore the map f : A−n → A−n+1 is
injective, and thus fn : A−n → A0 is also univalent. Therefore we can consider
the inverse branches f−n : A0 → A−n, which are of course also univalent, and
bounded since the images are contained in ∆(R). Hence these inverse branches
form a normal family, and any sequence of these inverse branches must have a
convergent subsequence, uniformly on compact subsets of A0. Since all the images
A−n are pairwise disjoint, it follows that the image of any limit map h = lim f−nj

must be a single point. After all, h must be holomorphic, and h(A0) cannot have
any interior points. If it did, then some (open) set A−n would intersect an interior
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point of h(A0), in which case that point could never be approximated by points in
other sets A−m.

Now we wish to conclude from the fact that any limit set h(A0) consists of a single
point, that the diameter of the sets A−n must converge to zero. We could conclude
this immediately if the convergence was uniform. However, the convergence is only
uniform, it is only uniform on compact subsets. This is not sufficient to conclude
that the diameters of A−n converge to zero. It is possible that the sets A−n become
very thin but long. How can we prove that this does not happen?

Definition 5. We say that a polynomial f is hyperbolic if some iterate fN acts
expandingly on the Julia set J .

Expanding means that |f ′(z)| > 1 for any z ∈ J . By compactness of J it follows
that there exists a µ > 1 such that |f ′(z)| > µ for any z ∈ J . An equivalent
definition of hyperbolicity is that there exists a metric on J with respect to which
f is uniformly expanding.

A clear example of a hyperbolic polynomial is the map z 7→ z2. The Julia set of
this map is the unit circle, where the derivative has constant norm 1. It turns out
that the polynomial fc that we have been considering is also hyperbolic. Therefore
it is also uniformly expanding in a given neighborhood of the Julia set. If the sets
An get sufficiently thin then they must be contained in this neighborhood of J . But
then the branches of f−1 that we are considering are uniform contractions on the
closure of the sets A−n, from which it follows that the diameters of A−n converge
to zero.

Looking back we notice that we actually did not need to go through the normality
argument. The fact that the area convergence to zero is enough in combination
with the univalence and the hyperbolicity. These two ingredients, the normality
argument and the hyperbolicity, will however play a crucial role in what will come
later in the course.

1.2. A short note on Equilibrium measures. Take any point z ∈ Ĉ\{∞}, and
define the probability measures

µn =
1

2n

∑
fn(w)=z

δw.

As usual we need to sum over all w counting multiplicities.
One can show that the measures µn converge weakly to a probabily measure µ

which is independent of the chosen point z. The measure µ is called the equilibrium
measure of f . It if invariant under f and supp(µ) = J . Many other natural
constructions lead to the same measure µ, and this measure plays an important role
in our understanding of one-dimensional complex dynamical systems. The above
construction works for any rational function, except for the exceptional polynomials
conjugate to z 7→ zd, in which case one should not start with the two completely
invariant critical points.

The construction of the equilibrium measure is due to Brolin (for polynomials,
1965), Lyubich (1982, for rational functions) and Mañé. It has been successfully
generalized to higher dimensional maps, starting with the works of Bedford-Smillie
(for polynomial automorphisms), Sibony-Fornæss (for holomorphic endomorphisms
of projective space), and later for many more maps, for an important part due to
Sibony.
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1.3. Back to the Fatou set. Our earlier claim 2, stating that the boundary of
each of the red, green and blue sets equals J , follows from the above comment that
supp(µ) = J , but there is a much easier way to prove the claim. Let z ∈ J , and let
U be a neighborhood of z. Then U must contain both red, blue and green points,
otherwise the family of iterates defined on U avoids at least 2 points of C and by
Montel’s theorem is normal. But this would contradict the definition of J .

Our last claim, which was in fact the first claim, states that A = K◦, which is
equivalent to saying that the Fatou set has no other connected components. Con-
nected components of the Fatou set are called Fatou components, and for rational
functions they are very well understood. The proof of the last claim will follow from
the following two theorems.

Theorem 6 (Fatou, Siegel, Herman, Sullivan). Let f : Ĉ→ Ĉ be rational of degree
at least 2, and let U be a Fatou component. Then U is either periodic or pre-periodic.
If U is invariant then U must either be

• Attracting basin the immediate basin of an attracting fixed point p, i.e.
f(p) = p and |f ′(p)| < 1.
• Parabolic basin an immediate basin of a parabolic fixed point p, i.e. f(p) = p

and f ′(p) = 1.
• Siegel disk: equivalent to a disk on which f acts as an irrational rotation.
• Herman ring: equivalent to an annulus on which f acts as an irrational

rotation.

The classification is due to Fatou, but he was not able to decide whether the
third and fourth cases could exist. The existence of Siegel disks was shown by
Siegel in the 1940’s, the existence of Herman rings was shown by Herman in 1979.
In both cases there exists a conformal map ϕ : U 7→ Σ such that φ(f(z)) = λ ·φ(z),
where λ = e2πiθ and θ ∈ R \ Q. Here Σ is either the unit disk (in the Siegel
case) or an annulus (in the Herman case). Note that Herman rings cannot exist for
polynomials. It was shown by Sullivan in 1985 that every Fatou component is either
periodic or pre-periodic. A Fatou component that is not periodic or pre-periodic
is called wandering. For this reason one often refers to Sulivan’s No Wandering
Domains Theorem.

Theorem 7 (Fatou components and critical points). The immediate basin of an
attracting fixed point or attracting parabolic point must contain a critical point. The
boundary of a Siegel disk must be contained in the closure of a critical orbit.

Since for our specific polynomial the critical orbit is a finite (and thus compact)
subset of A0∪A1∪A2 it follows that there can be no invariant Siegel disks, parabolic
basins or other attracting basins. This not only holds for f but also for fn for
any n. Hence there can be no other periodic Fatou components, and it follows
from Sullivan’s No Wandering Domains Theorem that there exist no other Fatou
components, hence A = K◦.

2. Lecture 2, classification of Fatou components

In this lecture we will prove the classification of one-dimensional Fatou compo-
nents discussed in the previous lecture. We will cheat a little bit and work with
polynomials instead of rational functions. In the rational case one would need to
work with hyperbolic Riemann surfaces, where we will have an easier time working
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with bounded simply connected domains in C. A more complete discussion can be
found in Milnor’s book Dynamics in One Complex Variable.

Recall that there exists a conformal metric on the unit disk that is invariant under
all conformal automorphisms of D. This metric is unique up to a multiplicative
constant and is called the Poincaré metric. The precise formula of the Poincaré
metric will not be important for us here, nor will the choice of the multiplicative
constant. By the Riemann mapping theorem we can push forward the Poincaré
metric to any bounded simply connected domain U ⊂ C. We will also refer to this
metric on U as the Poincaré metric.

Homework 7. Prove that the Poincaré metric on U is independent of the choice
of the Riemann mapping.

Now let U and V both be bounded simply connected domains in C, and let
f : U → V be holomorphic. Then f is non-expanding with respect to the Poincaré
metrics of U and V . In fact, either f is biholomorphic, and thus an isometry, or f
strictly reduces Poincaré distances, uniformly on compact subsets of U .

Theorem 8. Let U be a bounded simply connected domain and let f : U → U be
holomorphic. Then one of the following holds

• There is an attracting fixed point and all orbits converge to this point, uni-
formly on compact subsets of U .
• The map f is conjugate to an irrational rotation.
• There is an k ∈ N such that fk = Id.
• The map is escaping, i.e. for any compact K ⊂ U there exists an NK such

that fn(K) ∩K = ∅ for n ≥ Nk.

This escaping case is sometimes called compactly divergent.

Proof. We may assume that we are dealing with the unit disk U = D. Suppose that
f is not escaping. If f preserves the Poincaré metric then f is an automorphism of
D, and thus of the form

z 7→ θ · z − a
1− az

.

The only maps of this form that are not escaping are conjugate to rotations, either
rational or irrational, which gives either the second or the third case.

If f strictly decreases Poincaré distances, uniformly on compact subsets of U ,
then it follows that there is a r < 1 and an integer k such that fk(∆(r)) is relatively
compact in ∆(r), and hence fk must have an attracting fixed point p in ∆(r). Since
fk strictly decreases Poincaré distances it can only have one fixed point, and hence
p must also be an attracting fixed point of f . This completes the proof. �

Homework 8. Prove that all holomorphic automorphisms of D are indeed of the
form

z 7→ θ · z − a
1− az

.

One has to be a little careful when assuming that U = D. In the above proof all
goes well, but in the next result it can lead to a proof that is correct for the unit
disk but does not hold in general.

Lemma 9. Let f : U → U be escaping and suppose that f extend continuously to
the boundary ∂U . Also assume that f |∂U has only finitely many fixed points. Then
fn converges to a single boundary point p ∈ U ,
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In the case U = D the assumption that f extends continuously to the boundary
is redundant, and without this assumption the result is known as the Denjoy-Wolff
theorem. The Denjoy-Wolff theorem does hold in greater generality, even outside
the holomorphic setting and in also in several complex variables, but one needs to
assume some kind of convexity property. It does not hold for all simply connected
domains! So we will really need that f extends continuously to the boundary, and
we may not assume that U = D.

Proof. Take a point z ∈ U , and suppose that fnj (z) → p ∈ ∂U for some sequence
(nj). Since the Poincaré metric blows up near the boundary of U , it follows that
fnj+1(z) also converges to p, which implies that f(p) = p. By the assumption that
f has only finitely many fixed points in ∂U there can be at most finitely many such
limit points p. Now let us assume for the purpose of a contradiction that there exist
at least two limit points p and q.

Let γ : [0, 1] → U be smooth with γ(0) = z and γ(1) = f(z). Then we can
extend γ to the positive real line by recursively defining γ(x + 1) = f(γ(x)). The
piecewise smooth curve will converge to ∂U , and will accumulate both at p and q.
Now take a small disk Dε(p), so that q lies outside of the disk. Then the curve
must pass through the boundary of this disk infinitely many times, or to be more
precise, γ(x) ∈ ∂Dε(p) for arbitrarily large values of x. Again, since the Poincaré
metric blows up near ∂U , it follows that some subsequence fml(z) must converge to
a boundary point of this disk. By choosing the radius of the disk carefully we can
make sure no fixed points on ∂U ∩ ∂Dε(p). B passing to a convergent subsequence
of fml we obtain a counterexample. �

Lemma 10. Let f be a polynomial and U an invariant Fatou component, and
assume that fn|U converges to p ∈ ∂U . Then f ′(p) = 1.

For the proof of this result we also do not really need that the map is a global
polynomial, but we do need that f is holomorphic in a neighborhood of p.

Proof. Note that the fixed point p cannot be attracting, since attracting fixed points
lie in the interior of their basin. Hence |f ′| ≥ 1, and in particular f ′(p) 6= 0.

By conjugating with a translation we may assume that p = 0. Let V0 be a
relatively compact subset of U that is both open and simply connected. The iterates
fn converge to p uniformly on V0. By choosing V0 sufficiently large we may assume
that f(V0) ∩ V1 6= ∅, where Vn = fn(V0). Finally, we may assume that all the
sets Vn are contained in a small disk centered at the fixed point 0 on which f acts
injectively.

Now let us suppose for the purpose of a contradiction that f ′(0) 6= 1. Let w0 ∈ V0
such that w1 = f(w0) lies in V0 as well. ϕ : D → V0 be such that ϕ(0) = w0. We
define the maps gn : D→ Vn by

gn(ζ) =
fn ◦ ϕ(ζ)

fn ◦ ϕ(0)
=
fn ◦ ϕ(ζ)

wn
.

By our assumptions the maps gn are all conformal. Also, gn(0) = 1 for all n ∈ N,
while 0 /∈ gn(D) for all n ∈ N. Hence by the Koebe Distortion Theorem the family
{gn} is normal. Now notice that

gn(ϕ−1(w1)) =
wn+1

wn
→ f ′(0),
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Figure 2. All Fatou components are periodic or pre-periodic

and by assumption f ′(0) 6= 1. Recall that the limit of a convergent sequence of con-
formal functions must either be degenerate (i.e. mapping to a point) or be conformal
as well. But it cannot be degenerate, since gn(0) = 1 while gn(ϕ−1(w1)) → f ′(0).
Therefore all limits of the sequence (gn) are conformal, and there must be a bound
from below on the derivatives |g′(0)|, say

|g′n(0)| > ε.

Hence it follows by the Koebe- 14 Theorem that gn(D) contains D ε
4
(1), which implies

that Vn contains a disk centered at wn of radius ε
4 · |wn|. In other words, the inner

radius of the sets Vn are at least comparable to the distance to the origin.
Note that |f ′(0)| has to be equal to 1. We already remarked that it cannot be

smaller, as otherwise 0 would be attracting. But the norm also cannot be larger
than 1, otherwise orbits could not converge to the origin. By our assumption that
f ′(0) 6= 1 it follows that multiplication by f ′(0) gives a rotation. As the sets Vn
approach the origin, the maps f starts to act more and more as the linear rotation.
It follows that the points wn can only approach the origin at a slower and slower
rate, while they keep rotating around 0 at a fixed rate. Combining these facts
with our estimate on the inner radius of the sets Vn gives that at some point one
can find a simple closed curve that winds around the origin and is contained in a
finite number of sets Vn. Hence fn converges to 0 uniformly on this closed curve,
and by the Maximum Principle it follows that fn converges to 0 uniformly in a
neighborhood of the origin. But this contradicts the fact that the fixed point lies
on the boundary of the Fatou component. �

Now we have completed the classification of invariant Fatou components. We
will later get back to Sullivan’s Wandering Domains Theorem for specific classes of
polynomials, both in one and in several variables.
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Lemma 11. If U is the immediate basin of an attracting fixed point, then U must
contain a critical point.

Proof. If not then f : U 7→ U must be an automorphism and thus preserve the
Poincaré metric. But isometries cannot have attracting fixed points. �

Here is another argument with which one can show that U must contain a critical
point. Let us first assume that the attracting fixed point p ∈ U is not critical itself,
so that λ := f ′(p) 6= 0. Then define the maps ϕn : U → C by

ϕn(z) = λ−n · fn.
Let K ⊂ U be compact.

Homework 9. Prove that there exist 0 < r < 1 and C > 0 so that

|ϕn+1(z)− ϕn(z)| < Crn.

It follows that the sequence (ϕn) converges to a limit map Φ : U → C, uniformly
on compact subsets of U . One has Φ′(0) = 1 thus Φ is locally invertible in the
origin. The fact that the map f : U → U is proper implies that Φ is also surjective.
If f has no critical points then it is a conformal map from U → C, which gives a
contradiction since U is equivalent to the unit disk.

In the parabolic case one can give a quite similar argument to show that the
immediate basin must contain a critical point. If not, then the parabolic basin
must be equivalent to C. We will come back later to the role that critical points
play near the boundary of Siegel disks.

3. Lecture 3, classification of invariant Fatou components in higher
dimensions

So far we have mostly studied the dynamics of polynomials in one complex vari-
able. We will now switch to higher dimensions. However, it is not a good idea
to attempt to study all higher dimensional maps at the same time, the differences
between different polynomial maps are too great. For example, in one variable the
algebraic degree of a polynomial equals its topological degree. In higher dimension
this is not true, consider for example the following three maps.

(1) (z, w) 7→ (z, w + p(z) (a shear)
(2) (z, w) 7→ (z, w2)
(3) (z, w) 7→ (z2, w2)

While these three polynomials all have algebraic degree 2, but the topological de-
grees are respectively 1, 2 and 4.

Even more curious are the degrees of iterates. If f is a rational function of degree
d, then the degree of fn is dn. Not true in higher dimensions. For instance, the
iterates of the polynomial (z, w) 7→ (zw, z) have degrees equal to the Fibonacci
numbers!

While it is not reasonable to try to describe the dynamical behavior of all of
the above maps at the same time, there are several interesting classes of higher
dimensional rational maps. The class of maps that has received the most attention
is the family of polynomial automorphisms of C2. This is the class that we will focus
on from now. The class of holomorphic endomorphisms of P2 is also interesting,
and it can be considered the most natural generalization of one dimensional rational
functions. A third class that I would like to mention is the family of polynomial
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skew products, i.e. maps of the form (z, w) 7→ (fw(z), g(w)). These skew products
map vertical planes to vertical planes by one-dimensional polynomials. This means
that one-dimensional techniques can be used to study their properties. Polynomial
skew products have often been used to construct examples of maps with dynamical
behavior that was at the time unknown to exist.

3.1. Hénon maps. In the 1970’s the theoretical astronomer Michel Hénon sug-
gested a family of two-dimensional polynomial maps as a good model for the more
complicated Lorenz model. These maps were particular invertible polynomial auto-
morphisms of R2, but they were also be studied in the complex category. In 1989,
Friedland and Milnor proved that the only polynomial automorphisms of C2 with
interesting dynamical behavior are conjugate to finite compositions of generalized
Hénon maps, i.e. maps of the form

H(z, w) = (p(z) + δw, z),

where p is a polynomial of degree at least 2, and δ 6= 0. While compositions of such
maps are far more general than the maps suggested by Hénon, we will refer to them
as Hénon maps.

The proof of Friedland and Milnor relies on a classical result of Jung from the
1940’s, which states that the polynomial automorphism group of C2 is generated by
affine maps and shears. Compositions of affine maps and shears are called tame. So
Jung’s Theorem says that any polynomial of C2 is tame. It was shown much more
recently, in 2003 by Shestakov and Umirbaev, that there exist polynomial automor-
phisms of C3 that are not tame, although their example was already suggested by
Nakana in the 1970’s.

Note the significant differences between a shear

F (z, w) = (z, w + p(z))

and a seemingly similar Hénon map

H(z, w) = (w + p(z), z).

While the only change is the switching of the two coordinate functions, their dy-
namical behavior is vastly different. For example, the iterates of the shear can be
written in the closed form Fn = (z, w+np(z)), while this is not possible for iterates
of H. The algebraic degree of Fn is equal to the degree of F , while the algebraic
degree of Hn is the n-th power of the degree of H. The map F can be written
as the time-1 map of a flow, while the map H cannot even be written as a second
iterate, a result of Fornæss and Buzzard from 2003.

It turns out that one can still say a lot about the dynamics of Hénon maps, see
for example the long and ongoing series of articles that Bedford and Smillie have
written on the topic.

3.2. The filtration. For the rest of this lecture let f = H1 ◦ . . . ◦Hj be a Hénon
map of algebraic degree d ≥ 2. For R > 0 we define the following sets:

V + = {(z, w) ∈ C2 | |z| ≥ max(|w|, R)}
V − = {(z, w) ∈ C2 | |w| ≥ max(|z|, R)}

∆2(R) = {(z, w) ∈ C2 | |z|, |w| ≤ R}

Homework 10. Show that R > 0 can be chosen sufficiently large so that

(1) f(V +) ⊂ V +
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(2) f−1(V −) ⊂ V −
(3) If z ∈ V ± then

‖f±1(z)‖ ≥ 2‖z‖.

It follows from these properties that any forward orbit that reaches V + must
diverge to infinity. In fact, the orbit has to converge to the point [1 : 0 : 0] on the
line at infinity in P2. On the other hand, a forward orbit that does not diverge to
infinity must at some point reach ∆2(R) and never leave it. The radius R plays the
role of the escape radius as we used it in for polynomials in one complex variable.
Here, just like there, we have the property that most “interesting dynamics” takes
place in a compact subset, which is very useful.

Continuing the analogy with one-dimensional dynamics we define the basin of
infinity as

I∞ = {z ∈ C2 | fn(z)→∞}

=
⋃
f−n(V +).

It follows immediately that I∞ is open, connected and completely invariant. Simi-
larly we define the set of bounded orbits both for forward and backwards time:

K± = {z ∈ C2 | {fn(z)} bounded}.

The forward and backwards Julia sets are then defined by J± = ∂K±, and the
Fatou sets by F± = C2 \ J±. Just as in one variable we can equivalently define
both Fatou sets as the set of local normality for the family of forwards or backwards
iterates, using the restrictions to C2 of a metric defining the topology on P2. In
this course we are again interested in describing the possible Fatou components, i.e.
connected components of F+.

3.3. A short comment on the equilibrium measure. The construction of the
equilibrium measure used in one variable cannot literally be used in higher dimen-
sions, as a point has only a single inverse image. While there are still ways to define
the measure using equidistribution, we will use a different construction here, due to
Bedford-Smillie. Define the forward and backwards Green’s functions by

G± := lim
n→∞

1

dn
· log+ ‖f±n(z)‖.

These two pluri-subharmonic functions play a very important role in our under-
standing of Hénon maps and will come back later. Let us point out right away that
they satisfy the functional equations

G±(f(z)) = d±1G±(z).

Let us now define the positive, closed (1, 1) currents by

T± = 2i∂∂G±.

The support of the currents T± is equal to the Julia sets J±. Now define

µ = T+ ∧ T−.

It was shown by Bedford and Smillie that µ is a probability measure whose support
is contained in J = J+ ∩ J−. Whether its support is always equal to J is an
important open question, currently only settled for hyperbolic Hénon maps.
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3.4. Non-escaping Fatou components. In the description of Fatou components
we are many years behind the one dimensional situation. The existence of wandering
Fatou components is open, but in the fifth lecture we will consider some families of
Hénon maps for which the non-existence of wandering Fatou components is known.

Pre-periodic Fatou components do not exist since we are working with invertible
maps. In what follows we will attempt to describe the state of knowledge regarding
invariant Fatou components.

As for polynomials in one variable there always exists a single basin of infinity
I∞. We will focus on the rest, which only contain orbits with bounded forward
orbits. Recall that any such orbit must eventually reach ∆2(R).

It is useful to immediately make a distinction between escaping and the non-
escaping Fatou components. In the former case all orbits converge to the boundary,
while in the latter case, which is usually called the recurrent case, every orbit is
contained in a compact subset. The reason for the name recurrent is that for these
invariant Fatou components there exists a recurrent orbit.

Theorem 12 (Bedford-Smillie 1991). Let U be a non-escaping invariant Fatou
component with bounded forward orbits. Then either

(1) (Attracting) all orbits converge to an attracting fixed point p ∈ U , and
U ∼= C2.

(2) (Attracting-rotating) all orbits converge to a 1-dimensional submanifold Σ
which is closed in U . The Riemann surface Σ is either an embedded disk or
an annulus, and f acts on Σ as an irrational rotation.

(3) (Siegel domain) there exists a sequence fnj converging to the identity.

There are still a number of open questions in the non-escaping case. For example,
it is not known whether the Riemann surface Σ can actually be an annulus. The only
known examples of Siegel domains are those arising from linearizable fixed points.
In particular it is not known if a Siegel domain can have non-trivial topology. Can
a Siegel domain be biholomorphic to an annulus cross a disk?

There is a similar result for non-escaping Fatou components of holomorphic en-
domorphisms by Fornæss and Sibony (1994). In this case the attracting-rotating
annulus can exist, but Ueda ruled out an attracting-rotating punctured disk in 2008.

Time does not permit us to discuss the proof of the classification of non-escaping
Fatou components here. Instead we will focus on the escaping case.

3.5. The escaping case. Note that the Jacobian determinant of a polynomial au-
tomorphism is a non-constant polynomial on C2, and is therefore constant. Hence
a Hénon map is either uniformly volume expanding, volume contracting (“dissi-
pative”) or volume preserving. In the volume expanding case it follows from the
existence of the filtration that a volume expanding Hénon map does not have any
Fatou components besides the basin of infinity. In the volume preserving case all
other Fatou components are Siegel domains. In particular, and this follows imme-
diately from the fact that ∆2(R) has finite volume, there are no wandering Fato
components. The dissipative case is most interesting and the least understood.
The non-escaping invariant Fatou components are attracting or attracting-rotating.
What about the invariant components that are escaping?

Let f be an Hénon map of degree d and with Jacobian determinant δ. We will
say that f is substantially dissipative if

|δ| < 1

d2
.
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Theorem 13. Let f be a substantially dissipative Hénon map and let U be an
escaping invariant Fatou component. Then the maps fn converge uniformly on
compact subsets of U to a fixed point p ∈ ∂U . The eigenvalues λ1, λ2 of Df(p)
satisfy λ1 = 1 and |λ2| < 1. In particular U ∼= C2.

The hypothesis that f is substantially dissipative is essential in the proof, and it
is not known whether the above result holds when 1

d2 ≤ |Jac(f)| < 1. It is however
clear that in order to possibly prove the result in this near conservative case, a new
idea is needed.

3.6. Stable manifolds. Attracting sets occur in many different variations. The
most basic example is the attracting basin of a single attracting fixed point. If a
fixed point p = f(p) is not attracting but hyperbolic, meaning that the eigenvalues
λ1, λ2 of Df(p) satisfy |λ1| < 1 < |λ2|, then one can still define

Σsf (p) = {z ∈ C2 | fn(z)→ p},

but the set Σsf (p) does not contain an open neighborhood of p. In fact, Σsf (p) is a
one-dimensional complex manifold, or to be more precise, an injectively immersed
Riemann surface, equivalent to the complex plane. Note that if f is linear then
Σsf (p) is a straight complex line, determined by eigen vector v1 corresponding to

the attracting eigenvalue λ1. If f is a Hénon map then Σsf (p) is never a straight

line, and is generally not a submanifold. However, Σsf (p) is locally a graph over the
plane spanned by the vector v1. Here it is important that by “locally” we mean
locally in the stable manifold, not locally in the ambient space C2.

In general, if an automorpism F : Xm → Xm has a fixed point p and Df(p)
has k attracting and m − k repelling generalized eigen values, then the stable and
unstable manifolds are locall defined, and are complex manifolds of dimension k
and m− k. The stable and unstable manifolds are equivalent to Ck resp. Cm−k.

If F has some neutral eigenvalues then one can still define the stable manifold
by choosing an r < 1 which is strictly larger than all attracting eigen values, and
writing

Σsf (p) = {z ∈ C | ∃C > 0∀n ∈ N : d(fn(z), p) < Crn},
which is still a complex manifold of dimension equal to the number of attracting
eigen values, and is sometimes called the strong stable manifold. Note that the
constant C is allowed to depend on the point z.

Stable and unstable manifolds can also be defined when the point p is not fixed
but lies in some compact invariant subset K ⊂ X and there is an invariant splitting
of the tangent bundle into attracting and repelling directions. One then defines

Σsf (p) := {z ∈ X | ∃C > 0∀n ∈ N : d(fn(z), fn(p)) < Crn}.
These stable and unstable manifolds are still complex manifolds, however, if they
have dimension k ≥ 2 then it is in general not known whether they are equivalent
to Ck. This open question is known as the Bedford Conjecture.

Let us go back to Hénon maps, in which case the stable and unstable manifolds
are always 1-dimensional and equivalent to the complex plane. Let us discuss how
the biholomorphism from C to a stable manifold can be defined. For convenience
we will work with the stable manifold of a fixed point, but the construction can be
used when p is not periodic as well.

As we said before, the complex manifold is locally a graph over the a complex
plane spanned by the attracting eigen direction, corresponding to the attracting
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eigen value λ. Denote the local projection from this plane to the stable manifold
by πs, and define ϕn : Cζ → Σsf (p) by

ϕn(ζ) = f−n ◦ πs(λnζ).

Then the maps ϕn converge uniformly on compact subsets of C to a biholomorphic
map ϕ : C → Σsf (p). The map ϕ is called the linearization map, and satisfies the
functional equation

ϕ(λ · ζ) = f ◦ ϕ(ζ).

The linearization map is unique up to a multiplicative constant.

3.7. Substantially dissipative Hénon maps. Recall that the backwards Green
function G− is a plurisubharmonic function on C2 that satisfies

G−(f(z)) =
1

d
G−(z).

Also recall that a Hénon map is called substantially dissipative if

|δ| = |Jac(f)| < 1

d2
.

Homework 11. Let p be a hyperbolic fixed point of a substantially dissipative
Hénon map, and let ϕ be its linearization map. Then g := G− ◦ϕ is a non-constant
subharmonic function defined on all of C that near infinity satisfies

g(z) = O(|z|r)
for some r < 1

2 .

We say that the function g is of order of growth less than 1
2 .

Theorem 14 (Wiman). If g : C → R is a non-constant subharmonic function of
order of growth less than 1

2 . Then all connected subsets of sublevel sets {g < c} are
bounded.

In fact Wiman’s classical result fromt he 1920’s says more than this, but this is
the property that is used to classify escaping Fatou components.

4. Lecture 4, Proof of invariant Fatou components

4.1. Smoothness of limit sets. Let U be an escaping invariant Fatou component
of our Hénon map f . Our first goal is to prove that all orbits must converge to a
single boundary point. By normality there exist many convergent subsequences fnj

on U . A limit map h = limfnj |U maps into the boundary and therefore a priori
either has rank 0 or rank 1 (in the rank 1 case the rank can drop to 0 in isolated
points). Note that in the rank 0 case the image is a single point. In the rank 1
case the image is a possibly singular analytic set. The first step is to show that the
image cannot be singular.

Lemma 15. Let f : X2 → X2 be a holomorphic endomorphism, let U be an
invariant Fatou component that is escaping, and let (fnj ) be a sequence of iterates
that converges uniformly on compact subsets of U to a limit map h : U → ∂U .
Suppose that h has generic rank 1. Then h(U) is an injectively immersed Riemann
surface.

Proposition 16. Let h : D → C2 be holomorphic. If h(D) is singular then there
exists an ε > 0 such that if h′ : D→ C2 is holomorphic and satisfies ‖h− h′‖D < ε
then h(D) ∩ h′(D) 6= ∅.
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Homework 12. Prove this proposition for the standard cusp

h(t) = (t2, t3).

Prove that lemma follows from proposition.
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