
Intel Xeon Phi Lab - Fortran

Preliminary:

 Don’t forget to load the intel module and (eventually) the Intel MPI module too.
module load intel
module load mkl (if required)
source $INTEL_HOME/bin/compilervars.sh intel64

Exercise 1

 Copy omp_offload_start.F90 to omp_offload.F90
 Edit omp_offload.F90 and add code to offload the OpenMP section and to

offload the test to check whether or not the code is running on the coprocessor
 Compare omp_offload.F90 to omp_offload_ours.F90 to make sure you got

everything
 Make sure that the number of threads is unconstrained (unset

OMP_NUM_THREADS)
 Build the result for host-only and check the vectorization messages

ifort ­vec­report=3 ­openmp ­no­offload omp_offload.F90
main.F90

 Build the result for offload and note compare the vectorization messages with
the case of the host compilation

ifort ­vec­report=3 ­openmp omp_offload.F90 main.F90
 Run the result with different numbers of threads on the coprocessor so that you

can see the scaling
 What sort of scaling do you see?

Exercise 2

 Make a copy of mCarlo_offload_start.F90:
cp mCarlo_offload_start.F90 mCarlo_myoffload.F90

 Add code to offload the “do_calculation” subroutine and write code in order to
test whether or not the code is running on the coprocessor. The code to be
offloaded was placed in a subroutine to simplify the creation of the streams on
the coprocessor rather than on the processor.

 Build the result:
ifort ­mkl ­openmp mCarlo_myoffload.F90

 It could happen that for the last recent of the compiler, the
VSL_METHOD_DGAUSSIAN_BOXMULLER2

is no longer present. You can replace it with the new method name:
VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2

 Compare your result to mCarlo_offload_ours.F90

Exercise 3

“Native” Intel® Xeon PhiTM coprocessor applications treat the coprocessor as a
standalone multicore computer. Once the binary is built on your host system, it is
copied to the “filesystem” on the coprocessor along with any other binaries and
data it requires. The program is then run from the ssh console. (On Cineca
machines you can reach a MIC card typing ssh $HOSTNAME-mic0 or $HOSTNAME-
mic1)

 Build our sample application with the –mmic flag. The sample code is a single-file
version of the matrix multiply code we previously worked with:
ifort –mmic –vec­report=3 –openmp omp_offload_native.F90

 Now upload the result (a.out) to the coprocessor
scp a.out $HOSTNAME­mic0:a.out

 Connect with ssh and run a.out:
> ssh $HOSTNAME­mic0
~ # ./a.out 2048

 As you noted from the error message, we are missing the OpenMP runtime
library needed to run this application. So, when you're logged on the Xeon Phi,
export the proper library directory:
export LD_LIBRARY_PATH= \
/cineca/prod/compilers/intel/cs­xe­2013/binary/composerxe/lib/mic/

 Try to run again.

Exercise 4

Code of any complexity tends to do things in stages. This can complicate things
when multiple stages need to execute on a coprocessor, and you need the results
from one stage to persist until the next call. In this section, we will explore how this
is done.

 Take a look at omp_offload_ours.F90 and note how the data transfer and work
happen in a single offload call. Let us artificially change this into three stages
and observe what happens.

 Start with omp_3stageoffload_nopersist.F90. Build it and observe what
happens when it runs:
ifort ­O3 omp_3stageoffload_nopersist.F90 ­o mmul_nopersist
./mmul_nopersist 2048

 You will see an error message.

 Now compare omp_3stageoffload_nopersist.F90 to
omp_3stageoffload_persist.F90

 Build and run omp_3stageoffload_persist.F90:
ifort ­O3 omp_3stageoffload_persist.F90 ­o mmul_persist
./mmul_persist 2048

 Did you get the expected result?
 Make sure you understand how the alloc_if, free_if, and nocopy qualifiers are

used in the offload statement. Refer to the compiler reference manual.

Exercise 5

Codes often operate on blocks of data which require the data block to be moved to
the coprocessor at the start of the computation and back to the host at the end.
Such codes benefit by the use of asynchronous data transfers where the
coprocessor computes one block of data while another block is being transferred
from the host. Asynchronous transfers can also improve performance for codes
requiring multiple data transfers between the host and the coprocessor.

 Take a look at do_offload subroutine in async_start.F90 and notice how the two
arrays are processed one after the other using offload statements.

 Change this code so that you transfer one array while the other one is
computing. Modify the do_async function to use asynchronous data transfers.

 Build and run the program.
ifort –o async.out async_start.F90
./async.out

 Notice that the do_async function is faster compared to the do_offloads
function.

 Make sure you understand how the signal and wait qualifiers are used in the
offload statements. Refer to the compiler reference manual for more details.

Intel Xeon Phi Lab - C

Preliminary:

 Don’t forget to load the intel module and (eventually) the Intel MPI module too.
module load intel
module load mkl (if required)
source $INTEL_HOME/bin/compilervars.sh intel64

Exercise 1

 Copy omp_offload_start.cpp to omp_offload.cpp
 Edit omp_offload.cpp and add code to offload the OpenMP section and to

offload the test for whether or not the code is running on the coprocessor
 Compare omp_offload.cpp to omp_offload_ours.cpp to make sure you got

everything
 Make sure that the number of threads is unconstrained (unset

OMP_NUM_THREADS)
 Build the result for host-only and check the vectorization messages

icc ­qopt­report­phase=vec ­openmp ­qno­offload omp_offload.cpp
main.cpp

 Build the result for offload and note how the vectorization message change
ifort ­qopt­report­phase=vec ­openmp omp_offload.cpp main.cpp

 Check and understand the different optimization reports.
 Run the result with different numbers of threads on the coprocessor so that you

can see the scaling
 What sort of scaling do you see?

Exercise 2

 Make a copy of mCarlo_offload_start.cpp:
cp mCarlo_offload_start.cpp mCarlo_myoffload.cpp

 Add code to offload the OpenMP section at line 64 and write code in order to test
whether or not the code is running on the coprocessor. Note how we had to
move the VSLStreamStatePtr definitions within the offload statement block
(compare to mCarlo_offload_ours.cpp).

 Build the result:
icc: ­mkl ­openmp mCarlo_myoffload.cpp
It could happen that for the last recent of the compiler, the
VSL_METHOD_DGAUSSIAN_BOXMULLER2

is no longer present. You can replace it with the new method name:
VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2

 Compare your result to mCarlo_offload_ours.cpp

Exercise 3

“Native” Intel® Xeon PhiTM coprocessor applications treat the coprocessor as a
standalone multicore computer. Once the binary is built on your host system, it is
copied to the “filesystem” on the coprocessor along with any other binaries and
data it requires. The program is then run from the ssh console. (On Cineca
machines you can reach a MIC card typing ssh $HOSTNAME-mic0 or $HOSTNAME-
mic1)

 Build our sample application with the –mmic flag. The sample code is a single-file
version of the matrix multiply code we previously worked with:
icc –mmic –vec­report=3 –openmp omp_offload_native.cpp

 Now upload the result (a.out) to the coprocessor
scp a.out $HOSTNAME­mic0:a.out

 -Connect with ssh and run a.out:
> ssh $HOSTNAME­mic0
~ # ./a.out 2048 1

 As you noted from the error message, we are missing the OpenMP runtime
library needed to run this application. So, when you're logged on the Xeon Phi,
export the proper library directory:
export LD_LIBRARY_PATH= \
/cineca/prod/compilers/intel/cs­xe­2013/binary/composerxe/lib/mic/

 Now go to the ssh window and try to run again on the coprocessor
./a.out 2048 1

Exercise 4

Code of any complexity tends to do things in stages. This can complicate things
when multiple stages need to execute on a coprocessor, and you need the results
from one stage to persist until the next call. In this section, we will explore how this
is done.

 Take a look at omp_offload_ours.cpp and note how the data transfer and work
happen in a single offload call. Let us artificially change this into three stages
and observe what happens.

 Start with omp_3stageoffload_nopersist.cpp. Build it and observe what
happens when it runs:
icc ­O3 ­openmp omp_3stageoffload_nopersist.cpp ­o mmul_nopersist
./mmul_nopersist 2048

 You will see an error message.
 Now compare omp_3stageoffload_nopersist.cpp to

omp_3stageoffload_persist.F90
 Build and run omp_3stageoffload_persist.cpp:

icc ­O3 ­openmp omp_3stageoffload_persist.cpp ­o mmul_persist
./mmul_persist 2048

 Did you get the expected result?
 Make sure you understand how the alloc_if, free_if, and nocopy qualifiers are

used in the offload statement. Refer to the compiler reference manual.

Exercise 5

Codes often operate on blocks of data which require the data block to be moved to
the coprocessor at the start of the computation and back to the host at the end.
Such codes benefit by the use of asynchronous data transfers where the
coprocessor computes one block of data while another block is being transferred
from the host. Asynchronous transfers can also improve performance for codes
requiring multiple data transfers between the host and the coprocessor.

 Take a look at do_offload function in async_start.cpp and notice how the two
arrays are processed one after the other using offload statements.

 Change this code so that you transfer one array while the other one is
computing. Modify the do_async function to use asynchronous data transfers.

 Build and run the program.
icc –o async.out async_start.cpp
./async.out

 Notice that the do_async function is faster compared to the do_offloads
function.

 Make sure you understand how the signal and wait qualifiers are used in the
offload statements. Refer to the compiler reference manual for more details.

	Intel Xeon Phi Lab - Fortran
	Intel Xeon Phi Lab - C

