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CUDA Work Abstraction 

• Work is expressed as a multidimensional 

array of independent work items called 

“threads” – not the same thing as a CPU 

thread 

• CUDA Kernels can be thought of as telling a 

GPU to compute all iterations of a set of 

nested loops concurrently 

• Threads are dynamically scheduled onto 

hardware according to a hierarchy of thread 

groupings 
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Comparison of CPU and GPU           

Hardware Architecture 

CPU: Cache heavy, 
focused on individual 
thread performance  

GPU: ALU heavy, 
massively parallel, 
throughput oriented 
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NVIDIA Kepler GPU Streaming Multiprocessor - SMX 

GPC GPC GPC GPC 

1536KB 

Level 2 

Cache 

SMX SMX 

Tex Unit 

48 KB  Tex + Read-only Data Cache 

64 KB L1 Cache / Shared Memory 

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache 
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16 × Execution block = 
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GPU Thread “Occupancy” 
• GPU hardware designed to oversubscribe ALUs with lots of 

threads, thereby tolerating very long memory latencies without 

large on-chip caches 

• Occupancy refers to the degree to which the GPUs warp 

scheduler is “full” of threads 

• High occupancy often (but not always) provides greater latency 

hiding, which is usually (but not always) better for performance 

• Sometimes it is possible to achieve good performance even with 

relatively low occupancy, via schemes that increase work-

efficiency, instruction-level parallelism, etc. 

• Occupancy is limited by a kernel’s register use, shared memory 

requirement, block size, and the available number of blocks in a 

grid – Explore CUDA Occupancy Calculator Spreadsheet!!! 
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CUDA Work Abstractions: 

 Grids, Thread Blocks, Threads 
1-D, 2-D, or 3-D (SM >= 2.x) 
Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… 

… 

… 

… 

1-D, 2-D, 3-D 
thread block: 

SM 

Thread blocks are 
scheduled onto pool 
of GPU SMs… 
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GPU Thread Block Execution  

• Thread blocks are decomposed onto 

hardware in 32-thread “warps” 

• Hardware execution is scheduled in 

units of warps – an SM can execute 

warps from several thread blocks 

• Warps run in SIMD-style execution: 

– All threads execute the same 

instruction in lock-step  

– If one thread stalls, the entire warp 

stalls… 

– A branch taken by a thread has to be 

taken by all threads... (divergence is 

bad) 

1-D, 2-D, 3-D 
thread block: 

SM 

Thread blocks are 
multiplexed onto 
pool of GPU SMs… 
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GPU Warp Branch Divergence 

• Branch divergence: when not all threads take 

the same branch,  the entire warp has to 

execute both sides of the branch  

• Branch divergence issue not unique to GPUs, 

affects all SIMD hardware platforms… 

• On GPUs, we get fast hardware-based 

implementation of predication/masking/etc… 

• GPU blocks memory writes from disabled 

threads in the “if then” branch, then inverts 

all thread enable states and runs the “else” 

branch 

• GPU hardware detects warp reconvergence 

and then runs with all threads enabled... 

 

1-D, 2-D, 3-D 
thread block: 

SM 

Thread blocks are 
multiplexed onto 
pool of GPU SMs… 
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GPU Thread Block Collective Operations 

• Threads within the same thread block 

can communicate with each other in 

fast on-chip shared memory 

• Once scheduled on an SM, thread 

blocks run until completion 

• Because the order of thread block 

execution is arbitrary and blocks 

cannot be stopped, they cannot 

communicate or synchronize with 

other thread blocks (*) 

• (*) Atomic memory ops are an 

exception wrt/ communication  

1-D, 2-D, 3-D 
thread block: 

SM 

Thread blocks are 
multiplexed onto 
pool of GPU SMs… 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

CUDA Grid/Block/Thread Decomposition 

Padding arrays out to full blocks 
optimizes global memory performance 
by guaranteeing memory coalescing 

1-D, 2-D, or 3-D (SM >= 2.x) 
Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

… 

1-D, 2-D, or 3-D 
Computational Domain 

1-D, 2-D, 3-D 
thread block: 
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Indexing Work 
• Within a CUDA kernel: 

– Grid: gridDim.[xyz] 

– Block: blockDim.[xyz] and blockIdx.[xyz] 

– Thread: threadIdx.[xyz] 

• Example CUDA kernel with 1-D Indexing: 

__global__ void cuda_add(float *c, float *a, float *b) { 

  int idx = (blockIdx.x * blockDim.x) + threadIdx.x;  

  c[idx] = a[idx] + b[idx]; 

} 
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Running a GPU kernel: 
int sz = N * sizeof(float); 

… 

cudaMalloc((void**) &a_gpu, sz); 

cudaMemcpy(a_gpu, a, sz, cudaMemcpyHostToDevice); 

… // do the same for ‘b_gpu’, allocate ‘c_gpu’ 

int Bsz = 256; // 1-D thread block size 

cuda_add<<<N/Bsz, Bsz>>>(c, a, b); 

cudaDeviceSynchronize(); // make CPU wait for completion 

... 

cudaMemcpy(c, c_gpu, sz, cudaMemcpyDeviceToHost); 

cudaFree(a_gpu); 

… // free ‘b_gpu’, and ‘c_gpu’… 
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What if Work Size Isn’t an Integer 

Multiple of the Thread Block Size? 
• Threads must check if they are “in bounds”: 

__global__ void cuda_add(float *c, float *a, float *b, int N) { 

  int idx = (blockIdx.x * blockDim.x) + threadIdx.x;  

  if (idx < N) { 

    c[idx] = a[idx] + b[idx]; 

  } 

} 
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Direct Coulomb Summation Performance 

CUDA-Simple: 

14.8x faster, 

33% of fastest 

GPU kernel 

CUDA-Unroll8clx: 

fastest GPU kernel, 

44x faster than CPU, 

291 GFLOPS on 

GeForce 8800GTX 

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 

J. Phillips. Proceedings of the IEEE, 96:879-899, 2008. 

CPU 

Number of thread blocks modulo number of SMs results in 

significant performance variation for small workloads  
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An Approach to Writing CUDA Kernels  
• Find an algorithm that can expose substantial parallelism, 

we’ll ultimately need tens of thousands of independent 

threads… 

• Identify appropriate GPU memory or texture subsystems 

used to store data used by kernel 

• Are there trade-offs that can be made to exchange 

computation for more parallelism? 

– Though counterintuitive, past successes resulted from this strategy 

– “Brute force” methods that expose significant parallelism do 

surprisingly well on GPUs 

• Analyze the real-world use case for the problem and select 

a specialized kernel for the problem sizes that will be 

heavily used 
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Getting Performance From GPUs 

• Don’t worry (much) about counting arithmetic 

operations…at least until you have nothing else left to do 

• GPUs provide tremendous memory bandwidth, but even 

so, memory bandwidth often ends up being the 

performance limiter 

• Keep/reuse data in registers as long as possible 

• The main consideration when programming GPUs is 

accessing memory efficiently, and storing operands in 

the most appropriate memory system according to data 

size and access pattern 
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GPU Memory Systems 

 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Comparison of CPU and GPU           

Hardware Architecture 

CPU: Cache heavy, 
focused on individual 
thread performance  

GPU: ALU heavy, 
massively parallel, 
throughput oriented 
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Graphics Processor 

         Cluster 

NVIDIA Fermi GPU Streaming Multiprocessor 
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NVIDIA Kepler GPU Streaming Multiprocessor - SMX 

GPC GPC GPC GPC 

1536KB 

Level 2 

Cache 

SMX SMX 

Tex Unit 

48 KB  Tex + Read-only Data Cache 

64 KB L1 Cache / Shared Memory 

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

16 × Execution block = 

 192 SP, 64 DP,  

32 SFU, 32 LDST 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

 Graphics Processor 

         Cluster 

GPC GPC GPC GPC 
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Peak Arithmetic Performance Trend 
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Peak Memory Bandwidth Trend 
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GPU PCI-Express DMA 

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations 

Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten. 

Journal of Parallel Computing, 2014. (In press) 

http://dx.doi.org/10.1016/j.parco.2014.03.009 
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GPU On-Board Global Memory 
• GPU arithmetic rates dwarf memory bandwidth 

• For Kepler K40 hardware: 

– ~4.3 SP TFLOPS vs. ~288 GB/sec 

– The ratio is roughly 60 FLOPS per memory 

reference for single-precision floating point 

• Peak performance achieved with “coalesced” 

memory access patterns – patterns that result in a 

single hardware memory transaction for a SIMD 

“warp” – a contiguous group of 32 threads 
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Memory Coalescing 

• Oversimplified explanation: 

– Threads in a warp perform a read/write operation that can be 

serviced in a single hardware transaction 

– Rules vary slightly between hardware generations, but new 

GPUs are much more flexible than old ones 

– If all threads in a warp read from a contiguous region that’s 32 

items of 4, 8, or 16 bytes in size, that’s an example of a 

coalesced access 

– Multiple threads reading the same data are handled by a 

hardware broadcast 

– Writes are similar, but multiple writes to the same location 

yields undefined results 
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Using the CPU to Optimize GPU Performance 

• GPU performs best when the work evenly divides 

into the number of threads/processing units 

• Optimization strategy:  

– Use the CPU to “regularize” the GPU workload 

– Use fixed size bin data structures, with “empty” slots 

skipped or producing zeroed out results 

– Handle exceptional or irregular work units on the CPU; 

GPU processes the bulk of the work concurrently 

– On average, the GPU is kept highly occupied, attaining 

a high fraction of peak performance 
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CUDA Grid/Block/Thread Decomposition 

Padding arrays out to full blocks 
optimizes global memory performance 
by guaranteeing memory coalescing 

1-D, 2-D, or 3-D (SM >= 2.x) 
Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

… 

1-D, 2-D, or 3-D 
Computational Domain 

1-D, 2-D, 3-D 
thread block: 
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GPU On-Chip Memory Systems 
• GPU arithmetic rates dwarf global memory 

bandwidth 

• GPUs include multiple fast on-chip memories to 

help narrow the gap: 

– Registers 

– Constant memory (64KB) 

– Shared memory (48KB / 16KB) 

– Read-only data cache / Texture cache (~48KB) 

• Hardware-assisted 1-D, 2-D, 3-D locality 

• Hardware range clamping, type conversion, interpolation 
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NVIDIA Kepler GPU Streaming Multiprocessor - SMX 

GPC GPC GPC GPC 

1536KB 

Level 2 

Cache 

SMX SMX 

Tex Unit 

48 KB  Tex + Read-only Data Cache 

64 KB L1 Cache / Shared Memory 

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

16 × Execution block = 

 192 SP, 64 DP,  

32 SFU, 32 LDST 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

 Graphics Processor 

         Cluster 

GPC GPC GPC GPC 
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Communication Between Threads 

• Threads in a warp or a thread 

block can write/read shared 

memory, global memory 

• Barrier synchronizations, and 

memory fences are used to 

ensure memory stores 

complete before peer(s) 

read… 

• Atomic ops can enable limited  

communication between 

thread blocks 

= 

+= 

+= 

+= 

Shared Memory Parallel 
Reduction Example 
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Example use of shared mem 
__device__ float sumabsdiff_sumreduction(int tid, int totaltb,  float *sumabsdiffs_s, float *sumabsdiffs) { 

  float sumabsdifftotal = 0.0f; 

  if (tid < warpSize) {  // do the final reduction within a single warp only…. 

      for (int i=tid; i<totaltb; i+=warpSize) { 

          sumabsdifftotal += sumabsdiffs[i]; 

      } 

      sumabsdiffs_s[tid] = sumabsdifftotal;  // write to shared memory 

  } 

  __syncthreads(); // all threads must hit syncthreads call... 

  // perform intra-warp parallel reduction...general loop version of parallel sum-reduction 

  for (int s=warpSize>>1; s>0; s>>=1) { 

      if (tid < s) { 

          sumabsdiffs_s[tid] += sumabsdiffs_s[tid + s]; 

      } 

      __syncthreads(); // all threads must hit syncthreads call... 

  } 

  return sumabsdiffs_s[0]; 

} 
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Avoiding Shared Memory Bank Conflicts: 
Array of Structures (AOS) vs.  

Structure of Arrays (SOA) 

• AOS: 

typedef struct { 

  float x; 

  float y;  

  float z; 

} myvec; 

myvec aos[1024]; 

aos[threadIdx.x].x = 0; 

aos[threadIdx.x].y = 0; 

• SOA 

typedef struct { 

  float x[1024]; 

  float y[1024]; 

  float z[1024]; 

} myvecs; 

myvecs soa; 

soa.x[threadIdx.x] = 0; 

soa.y[threadIdx.x] = 0; 
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Use of Atomic Memory Ops 

• Independent thread blocks can access shared 

counters, flags safely without deadlock 

when used properly 

– Allow a thread to inform peers to early-exit 

– Enable a thread block to determine that it is the 

last one running, and that it should do 

something special, e.g. a reduction of partial 

results from all thread blocks 
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Example use of atomic counters 
__device__ unsigned int tbcatomic[3] = {0, 0, 0};  // GLOBAL ATOMIC COUNTER 

VARIABLE 

__device__ void reset_atomic_counter(unsigned int *counter) { 

    counter[0] = 0; 

    __threadfence(); 

} 

 

……. 

 #if __CUDA_ARCH__ >= 200 

  // setup shared variable 

  __shared__ bool isLastBlockDone; 

  if (tid == 0) 

    isLastBlockDone = 0; 

  __syncthreads(); 

#endif 

……. 
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Example use of atomic counters 
#if __CUDA_ARCH__ >= 200    // only compute capability 2.0 or greater have atomic ops 

  if (tid == 0) {   // check if we are the last thread block to finish and finalize results 

      unsigned int bid = blockIdx.z * gridDim.x * gridDim.y + blockIdx.y * gridDim.x + blockIdx.x; 

      sumabsdiff[bid] = sumabsdiff_s[0]; 

      __threadfence(); 

      unsigned int value = atomicInc(&tbcatomic[0], totaltb); 

      isLastBlockDone = (value == (totaltb - 1)); 

  } 

  __syncthreads(); 

  if (isLastBlockDone) { 

      float totalsumabsdiff = sumabsdiff_sumreduction(tid, totaltb, sumabsdiff_s, sumabsdiff); 

      if (tid == 0) 

          sumabsdiff[totaltb] = totalsumabsdiff; 

      reset_atomic_counter(&tbcatomic[0]); 

  } 

#endif 
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Communication Between Threads in a Warp 

• On the recent 

Kepler/Maxwell GPUs, 

neighboring threads in a 

warp can exchange data 

with each other using 

shuffle instructions 

• Shuffle outperforms shared 

memory, and leaves shared 

memory available for other 

data 

= 

+= 

+= 

+= 

Intra-Warp Parallel 
Reduction with Shuffle,         
No Shared Memory Use 
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Avoid Output Conflicts,  

Conversion of Scatter to Gather 

• Many CPU codes contain algorithms that “scatter” 
outputs to memory, to reduce arithmetic 

• Scattered output can create bottlenecks for GPU 
performance due to bank conflicts 

• On the GPU, it’s often better to do more 
arithmetic, in exchange for a regularized output 
pattern, or to convert “scatter” algorithms to 
“gather” approaches 
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Avoid Output Conflicts:  

Privatization Schemes 
• Privatization: use of private work areas for workers 

– Avoid/reduce the need for thread synchronization barriers 

– Avoid/reduce the need atomic increment/decrement 
operations during work, use parallel reduction at the end… 

• By working in separate memory buffers, workers 
avoid read/modify/write conflicts of various kinds 

• Huge GPU thread counts make it impractical to 
privatize data on a per-thread basis, so GPUs must use 
coarser granularity: warps, thread-blocks 

• Use of the on-chip shared memory local to each SM 
can often be considered a form of privatization 
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Example: avoiding output conflicts when 

summing numbers among threads in a block 

N-way output conflict:                 
Correct results require costly barrier 
synchronizations or atomic memory 
operations ON EVERY ADD to prevent 
threads from overwriting each other… 

Parallel reduction: no output 
conflicts, Log2(N) barriers 

+= 

= 

+= 

+= 

+= 

+= 

Accumulate sums in thread-
local registers before doing any 

reduction among threads 
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Off-GPU Memory Accesses 

• Direct access or transfer to/from host memory or 

peer GPU memory  

– Zero-copy behavior for accesses within kernel 

– Accesses become PCIe transactions 

– Overlap kernel execution with memory accesses 

• faster if accesses are coalesced 

• slower if not coalesced or multiple writes or multiple reads 

that miss the small GPU caches 

• Host-mapped memory 

– cudaHostAlloc() – allocate GPU-accessible host 

memory 
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Off-GPU Memory Accesses 

• Unified Virtual Addressing (UVA) 

– CUDA driver ensures that all GPUs in the system use 

unique non-overlapping ranges of virtual addresses 

which are also distinct from host VAs 

– CUDA decodes target memory space automatically 

from the pointer 

– Greatly simplifies code for: 

• GPU accesses to mapped host memory 

• Peer-to-Peer GPU accesses/transfers 

• MPI accesses to GPU memory buffers 

• Leads toward Unified Virtual Memory (UVM) 
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Page Locked (Pinned) Host Memory 

• Allocates host memory that is marked unmoveable in 

the OS VM system, so hardware can safely DMA 

to/from it 

• Enables Host-GPU DMA transfers that approach full 

PCIe bandwidth: 

– PCIe 2.x   6 GB/s 

– PCIe 3.x 12 GB/s 

• Enables full overlap of Host-GPU DMA and 

simultaneous kernel execution 

• Enables simultaneous bidirectional DMAs to/from host  
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Multi-GPU Cards Will Become More Common 

• Peak memory bandwidth bound by 

area / perimeter of the GPU 

processor die, pin count, etc. 

• Apps bound by memory bandwidth 

can be better served by multi-GPU 

systems, multi-GPU cards 

• Multi-GPU cards will likely become 

more common as die-stacked 

memory and fast GPU-to-GPU links 

(e.g. announced NVLink) arrive 

 

 

 

GeForce Titan Z 

GeForce GTX 690 

Tesla K10 
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