The CUDA Programming Model and Memory Hierarchy

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

Workshop on Accelerated High-Performance Computing in Computational Sciences (SMR 2760),

International Centre for Theoretical Physics (ICTP),

Trieste, Italy, May 27, 2015

CUDA Work Abstraction

- Work is expressed as a multidimensional array of independent work items called "threads" not the same thing as a CPU thread
- CUDA Kernels can be thought of as telling a GPU to compute **all iterations** of a set of nested loops **concurrently**
- Threads are dynamically scheduled onto hardware according to a hierarchy of thread groupings

Comparison of CPU and GPU Hardware Architecture

CPU: Cache heavy, focused on individual thread performance

Control ALU ALU
ALU
Cache

DRAM

GPU: ALU heavy, massively parallel, throughput oriented

SMX

SMX

GPU Thread "Occupancy"

- GPU hardware designed to oversubscribe ALUs with lots of threads, thereby tolerating very long memory latencies without large on-chip caches
- Occupancy refers to the degree to which the GPUs warp scheduler is "full" of threads
- High occupancy often (but not always) provides greater latency hiding, which is usually (but not always) better for performance
- Sometimes it is possible to achieve good performance even with relatively low occupancy, via schemes that increase workeficiency, instruction-level parallelism, etc.
- Occupancy is limited by a kernel's register use, shared memory requirement, block size, and the available number of blocks in a grid Explore CUDA Occupancy Calculator Spreadsheet!!!

CUDA Work Abstractions: Grids, Thread Blocks, Threads

GPU Thread Block Execution

- Thread blocks are decomposed onto hardware in **32-thread** "warps"
- Hardware execution is scheduled in units of warps – an SM can execute warps from several thread blocks
- Warps run in SIMD-style execution:
 - All threads execute the same instruction in lock-step
 - If one thread stalls, the entire warp stalls...
 - A branch taken by a thread has to be taken by all threads... (divergence is bad)

Thread blocks are multiplexed onto pool of GPU SMs...

GPU Warp Branch Divergence

- Branch divergence: when not all threads take the same branch, the entire warp has to execute both sides of the branch
- Branch divergence issue not unique to GPUs, affects all SIMD hardware platforms...
- On GPUs, we get fast **hardware-based** implementation of predication/masking/etc...
- GPU blocks memory writes from disabled threads in the "if then" branch, then inverts all thread enable states and runs the "else" branch
- GPU hardware detects warp reconvergence and then runs with all threads enabled...

Thread blocks are multiplexed onto pool of GPU SMs...

1-D, 2-D, 3-D thread block:

GPU Thread Block Collective Operations

- Threads within the same thread block can communicate with each other in fast on-chip **shared memory**
- Once scheduled on an SM, thread blocks run until completion
- Because the order of thread block execution is arbitrary and blocks cannot be stopped, they cannot communicate or synchronize with other thread blocks (*)
- (*) Atomic memory ops are an exception wrt/ communication

Thread blocks are multiplexed onto pool of GPU SMs...

CUDA Grid/Block/Thread Decomposition

Indexing Work

- Within a CUDA kernel:
 - Grid: gridDim.[xyz]
 - Block: blockDim.[xyz] and blockIdx.[xyz]
 - Thread: threadIdx.[xyz]
- Example CUDA kernel with 1-D Indexing:

```
__global__ void cuda_add(float *c, float *a, float *b) {
  int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
  c[idx] = a[idx] + b[idx];
}
```


Running a GPU kernel:

```
int sz = N * sizeof(float);
cudaMalloc((void**) &a_gpu, sz);
cudaMemcpy(a_gpu, a, sz, cudaMemcpyHostToDevice);
... // do the same for 'b gpu', allocate 'c gpu'
int Bsz = 256; // 1-D thread block size
cuda_add<<<N/Bsz, Bsz>>>(c, a, b);
cudaDeviceSynchronize(); // make CPU wait for completion
cudaMemcpy(c, c_gpu, sz, cudaMemcpyDeviceToHost);
cudaFree(a_gpu);
... // free 'b gpu', and 'c gpu'...
```


What if Work Size Isn't an Integer Multiple of the Thread Block Size?

• Threads must check if they are "in bounds":

```
__global___ void cuda_add(float *c, float *a, float *b, int N) {
  int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
  if (idx < N) {
    c[idx] = a[idx] + b[idx];
  }
}
```


Direct Coulomb Summation Performance

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. *Proceedings of the IEEE*, 96:879-899, 2008.

An Approach to Writing CUDA Kernels

- Find an algorithm that can expose **substantial parallelism**, we'll ultimately need tens of thousands of independent threads...
- Identify **appropriate** GPU memory or texture subsystems used to store data used by kernel
- Are there trade-offs that can be made to exchange computation for **more parallelism**?
 - Though counterintuitive, past successes resulted from this strategy
 - "Brute force" methods that expose significant parallelism do surprisingly well on GPUs
- Analyze the real-world use case for the problem and select a specialized kernel for the problem sizes that will be heavily used

Getting Performance From GPUs

- Don't worry (much) about counting arithmetic operations...at least until you have nothing else left to do
- GPUs provide tremendous memory bandwidth, but even so, memory bandwidth often ends up being the performance limiter
- Keep/reuse data in registers as long as possible
- The main consideration when programming GPUs is accessing memory efficiently, and storing operands in the most appropriate memory system according to data size and access pattern

GPU Memory Systems

Comparison of CPU and GPU Hardware Architecture

CPU: Cache heavy, focused on individual thread performance

Control ALU ALU
ALU
Cache

DRAM

GPU: ALU heavy, massively parallel, throughput oriented

NVIDIA Fermi GPU ~3-6 GB DRAM Memory w/ ECC GPC GPC GPC GPC GPC 768KB Level 2 Cache

SMX

SMX

Peak Arithmetic Performance Trend

Theoretical GB/s

Peak Memory Bandwidth Trend

GPU PCI-Express DMA

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten.

Journal of Parallel Computing, 2014. (In press)

http://dx.doi.org/10.1016/j.parco.2014.03.009

GPU On-Board Global Memory

- GPU arithmetic rates dwarf memory bandwidth
- For Kepler K40 hardware:
 - ~4.3 SP TFLOPS vs. ~288 GB/sec
 - The ratio is roughly 60 FLOPS per memory reference for single-precision floating point
- Peak performance achieved with "coalesced" memory access patterns patterns that result in a single hardware memory transaction for a SIMD "warp" a contiguous group of 32 threads

Memory Coalescing

- Oversimplified explanation:
 - Threads in a warp perform a read/write operation that can be serviced in a single hardware transaction
 - Rules vary slightly between hardware generations, but new
 GPUs are much more flexible than old ones
 - If all threads in a warp read from a contiguous region that's 32 items of 4, 8, or 16 bytes in size, that's an example of a coalesced access
 - Multiple threads reading the same data are handled by a hardware broadcast
 - Writes are similar, but multiple writes to the same location yields undefined results

Using the CPU to Optimize GPU Performance

- GPU performs best when the work evenly divides into the number of threads/processing units
- Optimization strategy:
 - Use the CPU to "regularize" the GPU workload
 - Use fixed size bin data structures, with "empty" slots skipped or producing zeroed out results
 - Handle exceptional or irregular work units on the CPU;
 GPU processes the bulk of the work concurrently
 - On average, the GPU is kept highly occupied, attaining a high fraction of peak performance

CUDA Grid/Block/Thread Decomposition

GPU On-Chip Memory Systems

- GPU arithmetic rates dwarf global memory bandwidth
- GPUs include multiple fast **on-chip** memories to help **narrow the gap**:
 - Registers
 - Constant memory (64KB)
 - Shared memory (48KB / 16KB)
 - Read-only data cache / Texture cache (~48KB)
 - Hardware-assisted 1-D, 2-D, 3-D locality
 - Hardware range clamping, type conversion, interpolation

SMX

SMX

Communication Between Threads

- Threads in a warp or a thread block can write/read shared memory, global memory
- Barrier synchronizations, and memory fences are used to ensure memory stores complete before peer(s) read...
- Atomic ops can enable limited communication between thread blocks

Shared Memory Parallel Reduction Example

Example use of shared mem

```
_device__ float sumabsdiff_sumreduction(int tid, int totaltb, float *sumabsdiffs_s, float *sumabsdiffs) {
float sumabsdifftotal = 0.0f;
if (tid < warpSize) { // do the final reduction within a single warp only....
  for (int i=tid; i<totaltb; i+=warpSize) {
    sumabsdifftotal += sumabsdiffs[i];
  sumabsdiffs_s[tid] = sumabsdifftotal; // write to shared memory
syncthreads(); // all threads must hit syncthreads call...
// perform intra-warp parallel reduction...general loop version of parallel sum-reduction
for (int s=warpSize>>1; s>0; s>>=1) {
  if (tid < s) {
    sumabsdiffs s[tid] += sumabsdiffs s[tid + s];
   _syncthreads(); // all threads must hit syncthreads call...
return sumabsdiffs s[0];
```


Avoiding Shared Memory Bank Conflicts: Array of Structures (AOS) vs. Structure of Arrays (SOA)

```
• AOS:
                                • SOA
typedef struct {
                                typedef struct {
 float x;
                                 float x[1024];
 float y;
                                 float y[1024];
                                 float z[1024];
 float z;
 myvec;
                                } myvecs;
myvec aos[1024];
                                myvecs soa;
aos[threadIdx.x].x = 0;
                                soa.x[threadIdx.x] = 0;
aos[threadIdx.x].y = 0;
                                soa.y[threadIdx.x] = 0;
```


Use of Atomic Memory Ops

- Independent thread blocks can access shared counters, flags safely without deadlock when used properly
 - Allow a thread to inform peers to early-exit
 - Enable a thread block to determine that it is the last one running, and that it should do something special, e.g. a reduction of partial results from all thread blocks

Example use of atomic counters

```
_device__ unsigned int tbcatomic[3] = \{0, 0, 0\}; // GLOBAL ATOMIC COUNTER
VARIABLE
  _device__ void reset_atomic_counter(unsigned int *counter) {
  counter[0] = 0;
  __threadfence();
#if __CUDA_ARCH__ >= 200
 // setup shared variable
 __shared__ bool isLastBlockDone;
 if (tid == 0)
  isLastBlockDone = 0;
 __syncthreads();
#endif
```


Example use of atomic counters

```
#if __CUDA_ARCH__ >= 200 // only compute capability 2.0 or greater have atomic ops
 if (tid == 0) { // check if we are the last thread block to finish and finalize results
   unsigned int bid = blockIdx.z * gridDim.x * gridDim.y + blockIdx.y * gridDim.x + blockIdx.x;
   sumabsdiff[bid] = sumabsdiff_s[0];
   __threadfence();
   unsigned int value = atomicInc(&tbcatomic[0], totaltb);
   isLastBlockDone = (value == (totaltb - 1));
   _syncthreads();
 if (isLastBlockDone) {
   float totalsumabsdiff = sumabsdiff_sumreduction(tid, totaltb, sumabsdiff_s, sumabsdiff);
   if (tid == 0)
      sumabsdiff[totaltb] = totalsumabsdiff;
   reset_atomic_counter(&tbcatomic[0]);
```


Communication Between Threads in a Warp

- On the recent
 Kepler/Maxwell GPUs,
 neighboring threads in a
 warp can exchange data
 with each other using
 shuffle instructions
- Shuffle outperforms shared memory, and leaves shared memory available for other data

Intra-Warp Parallel Reduction with Shuffle, No Shared Memory Use

Avoid Output Conflicts, Conversion of Scatter to Gather

- Many CPU codes contain algorithms that "scatter" outputs to memory, to reduce arithmetic
- Scattered output can create bottlenecks for GPU performance due to bank conflicts
- On the GPU, it's often better to do more arithmetic, in exchange for a regularized output pattern, or to convert "scatter" algorithms to "gather" approaches

Avoid Output Conflicts: Privatization Schemes

- Privatization: use of private work areas for workers
 - Avoid/reduce the need for thread synchronization barriers
 - Avoid/reduce the need atomic increment/decrement
 operations during work, use parallel reduction at the end...
- By working in separate memory buffers, workers avoid read/modify/write conflicts of various kinds
- Huge GPU thread counts make it impractical to privatize data on a per-thread basis, so GPUs must use coarser granularity: warps, thread-blocks
- Use of the **on-chip shared memory** local to each SM can often be considered a form of privatization

Example: avoiding output conflicts when summing numbers among threads in a block

Accumulate sums in threadlocal registers before doing any reduction among threads

N-way output conflict:

Correct results require **costly barrier synchronizations** or **atomic memory operations ON EVERY ADD** to prevent threads from overwriting each other...

Parallel reduction: no output conflicts, Log2(N) barriers

Off-GPU Memory Accesses

- Direct access or transfer to/from host memory or peer GPU memory
 - Zero-copy behavior for accesses within kernel
 - Accesses become PCIe transactions
 - Overlap kernel execution with memory accesses
 - faster if accesses are coalesced
 - slower if not coalesced or multiple writes or multiple reads that miss the small GPU caches
- Host-mapped memory
 - cudaHostAlloc() allocate GPU-accessible host memory

Off-GPU Memory Accesses

- Unified Virtual Addressing (UVA)
 - CUDA driver ensures that all GPUs in the system use unique non-overlapping ranges of virtual addresses which are also distinct from host VAs
 - CUDA decodes target memory space automatically from the pointer
 - Greatly simplifies code for:
 - GPU accesses to mapped host memory
 - Peer-to-Peer GPU accesses/transfers
 - MPI accesses to GPU memory buffers
- Leads toward Unified Virtual Memory (UVM)

Page Locked (Pinned) Host Memory

- Allocates host memory that is marked unmoveable in the OS VM system, so hardware can safely DMA to/from it
- Enables Host-GPU DMA transfers that approach full PCIe bandwidth:
 - PCIe 2.x 6 GB/s
 - PCIe 3.x 12 GB/s
- Enables full overlap of Host-GPU DMA and simultaneous kernel execution
- Enables simultaneous bidirectional DMAs to/from host

Multi-GPU Cards Will Become More Common

- Peak memory bandwidth bound by area / perimeter of the GPU processor die, pin count, etc.
- Apps bound by memory bandwidth can be better served by multi-GPU systems, multi-GPU cards
- Multi-GPU cards will likely become more common as die-stacked memory and fast GPU-to-GPU links (e.g. announced NVLink) arrive

GeForce Titan Z

GeForce GTX 690

Acknowledgements

- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
- NVIDIA CUDA Center of Excellence, University of Illinois at Urbana-Champaign
- NVIDIA CUDA team
- NCSA Blue Waters Team
- Funding:
 - NSF OCI 07-25070
 - NSF PRAC "The Computational Microscope"
 - NIH support: 9P41GM104601, 5R01GM098243-02

- Runtime and Architecture Support for Efficient Data Exchange in Multi-Accelerator Applications Javier Cabezas, Isaac Gelado, John E. Stone, Nacho Navarro, David B. Kirk, and Wen-mei Hwu. IEEE Transactions on Parallel and Distributed Systems, 26(5):1405-1418, 2015.
- Unlocking the Full Potential of the Cray XK7 Accelerator Mark Klein and John E. Stone. Cray Users Group, Lugano Switzerland, May 2014.
- Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten. Journal of Parallel Computing, 40:86-99 2014.
- GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular Dynamics Flexible Fitting John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten. Faraday Discussions, 169:265-283, 2014.
- **GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.**J. Stone, K. L. Vandivort, and K. Schulten. UltraVis'13: Proceedings of the 8th International Workshop on Ultrascale Visualization, pp. 6:1-6:8, 2013.
- Early Experiences Scaling VMD Molecular Visualization and Analysis Jobs on Blue Waters. J. E. Stone, B. Isralewitz, and K. Schulten. Extreme Scaling Workshop (XSW), pp. 43-50, 2013.
- Lattice Microbes: High-performance stochastic simulation method for the reaction-diffusion master equation. E. Roberts, J. E. Stone, and Z. Luthey-Schulten. J. Computational Chemistry 34 (3), 245-255, 2013.

- Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System Trajectories. M. Krone, J. E. Stone, T. Ertl, and K. Schulten. *EuroVis Short Papers*, pp. 67-71, 2012.
- Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units Radial Distribution Functions. B. Levine, J. Stone, and A. Kohlmeyer. *J. Comp. Physics*, 230(9):3556-3569, 2011.
- Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics Trajectories. J. Stone, K. Vandivort, and K. Schulten. G. Bebis et al. (Eds.): 7th International Symposium on Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011.
- Quantifying the Impact of GPUs on Performance and Energy Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J Phillips. *International Conference on Green Computing*, pp. 317-324, 2010.
- GPU-accelerated molecular modeling coming of age. J. Stone, D. Hardy, I. Ufimtsev, K. Schulten. J. Molecular Graphics and Modeling, 29:116-125, 2010.
- OpenCL: A Parallel Programming Standard for Heterogeneous Computing. J. Stone, D. Gohara, G. Shi. Computing in Science and Engineering, 12(3):66-73, 2010.

- An Asymmetric Distributed Shared Memory Model for Heterogeneous Computing Systems. I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W. Hwu. ASPLOS '10: Proceedings of the 15th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 347-358, 2010.
- **GPU Clusters for High Performance Computing**. V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. *Workshop on Parallel Programming on Accelerator Clusters (PPAC)*, In Proceedings IEEE Cluster 2009, pp. 1-8, Aug. 2009.
- Long time-scale simulations of in vivo diffusion using GPU hardware. E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In *IPDPS'09: Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Computing*, pp. 1-8, 2009.
- High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd Workshop on General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM International Conference Proceeding Series, volume 383, pp. 9-18, 2009.
- **Probing Biomolecular Machines with Graphics Processors**. J. Phillips, J. Stone. *Communications of the ACM*, 52(10):34-41, 2009.
- Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy, J. Stone, K. Schulten. *J. Parallel Computing*, 35:164-177, 2009.

- Adapting a message-driven parallel application to GPU-accelerated clusters.

 J. Phillips, J. Stone, K. Schulten. *Proceedings of the 2008 ACM/IEEE Conference on Supercomputing*, IEEE Press, 2008.
- **GPU acceleration of cutoff pair potentials for molecular modeling applications**. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. *Proceedings of the 2008 Conference On Computing Frontiers*, pp. 273-282, 2008.
- **GPU computing**. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. *Proceedings of the IEEE*, 96:879-899, 2008.
- Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. *J. Comp. Chem.*, 28:2618-2640, 2007.
- Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. *Biophysical Journal*, 93:4006-4017, 2007.

