
NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

The CUDA Programming Model

and Memory Hierarchy

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

Workshop on Accelerated High-Performance Computing in

Computational Sciences (SMR 2760),

International Centre for Theoretical Physics (ICTP),

Trieste, Italy, May 27, 2015

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Work Abstraction

• Work is expressed as a multidimensional

array of independent work items called

“threads” – not the same thing as a CPU

thread

• CUDA Kernels can be thought of as telling a

GPU to compute all iterations of a set of

nested loops concurrently

• Threads are dynamically scheduled onto

hardware according to a hierarchy of thread

groupings

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Comparison of CPU and GPU

Hardware Architecture

CPU: Cache heavy,
focused on individual
thread performance

GPU: ALU heavy,
massively parallel,
throughput oriented

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NVIDIA Kepler GPU Streaming Multiprocessor - SMX

GPC GPC GPC GPC

1536KB

Level 2

Cache

SMX SMX

Tex Unit

48 KB Tex + Read-only Data Cache

64 KB L1 Cache / Shared Memory

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache

SP SP SP DP
SFU LDST

SP SP SP DP

16 × Execution block =

 192 SP, 64 DP,

32 SFU, 32 LDST

SP SP SP DP
SFU LDST

SP SP SP DP

 Graphics Processor

 Cluster

GPC GPC GPC GPC

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Thread “Occupancy”
• GPU hardware designed to oversubscribe ALUs with lots of

threads, thereby tolerating very long memory latencies without

large on-chip caches

• Occupancy refers to the degree to which the GPUs warp

scheduler is “full” of threads

• High occupancy often (but not always) provides greater latency

hiding, which is usually (but not always) better for performance

• Sometimes it is possible to achieve good performance even with

relatively low occupancy, via schemes that increase work-

efficiency, instruction-level parallelism, etc.

• Occupancy is limited by a kernel’s register use, shared memory

requirement, block size, and the available number of blocks in a

grid – Explore CUDA Occupancy Calculator Spreadsheet!!!

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Work Abstractions:

 Grids, Thread Blocks, Threads
1-D, 2-D, or 3-D (SM >= 2.x)
Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

…

…

…

1-D, 2-D, 3-D
thread block:

SM

Thread blocks are
scheduled onto pool
of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Thread Block Execution

• Thread blocks are decomposed onto

hardware in 32-thread “warps”

• Hardware execution is scheduled in

units of warps – an SM can execute

warps from several thread blocks

• Warps run in SIMD-style execution:

– All threads execute the same

instruction in lock-step

– If one thread stalls, the entire warp

stalls…

– A branch taken by a thread has to be

taken by all threads... (divergence is

bad)

1-D, 2-D, 3-D
thread block:

SM

Thread blocks are
multiplexed onto
pool of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Warp Branch Divergence

• Branch divergence: when not all threads take

the same branch, the entire warp has to

execute both sides of the branch

• Branch divergence issue not unique to GPUs,

affects all SIMD hardware platforms…

• On GPUs, we get fast hardware-based

implementation of predication/masking/etc…

• GPU blocks memory writes from disabled

threads in the “if then” branch, then inverts

all thread enable states and runs the “else”

branch

• GPU hardware detects warp reconvergence

and then runs with all threads enabled...

1-D, 2-D, 3-D
thread block:

SM

Thread blocks are
multiplexed onto
pool of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Thread Block Collective Operations

• Threads within the same thread block

can communicate with each other in

fast on-chip shared memory

• Once scheduled on an SM, thread

blocks run until completion

• Because the order of thread block

execution is arbitrary and blocks

cannot be stopped, they cannot

communicate or synchronize with

other thread blocks (*)

• (*) Atomic memory ops are an

exception wrt/ communication

1-D, 2-D, 3-D
thread block:

SM

Thread blocks are
multiplexed onto
pool of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Grid/Block/Thread Decomposition

Padding arrays out to full blocks
optimizes global memory performance
by guaranteeing memory coalescing

1-D, 2-D, or 3-D (SM >= 2.x)
Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

…

1-D, 2-D, or 3-D
Computational Domain

1-D, 2-D, 3-D
thread block:

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Indexing Work
• Within a CUDA kernel:

– Grid: gridDim.[xyz]

– Block: blockDim.[xyz] and blockIdx.[xyz]

– Thread: threadIdx.[xyz]

• Example CUDA kernel with 1-D Indexing:

__global__ void cuda_add(float *c, float *a, float *b) {

 int idx = (blockIdx.x * blockDim.x) + threadIdx.x;

 c[idx] = a[idx] + b[idx];

}

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Running a GPU kernel:
int sz = N * sizeof(float);

…

cudaMalloc((void**) &a_gpu, sz);

cudaMemcpy(a_gpu, a, sz, cudaMemcpyHostToDevice);

… // do the same for ‘b_gpu’, allocate ‘c_gpu’

int Bsz = 256; // 1-D thread block size

cuda_add<<<N/Bsz, Bsz>>>(c, a, b);

cudaDeviceSynchronize(); // make CPU wait for completion

...

cudaMemcpy(c, c_gpu, sz, cudaMemcpyDeviceToHost);

cudaFree(a_gpu);

… // free ‘b_gpu’, and ‘c_gpu’…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

What if Work Size Isn’t an Integer

Multiple of the Thread Block Size?
• Threads must check if they are “in bounds”:

__global__ void cuda_add(float *c, float *a, float *b, int N) {

 int idx = (blockIdx.x * blockDim.x) + threadIdx.x;

 if (idx < N) {

 c[idx] = a[idx] + b[idx];

 }

}

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Direct Coulomb Summation Performance

CUDA-Simple:

14.8x faster,

33% of fastest

GPU kernel

CUDA-Unroll8clx:

fastest GPU kernel,

44x faster than CPU,

291 GFLOPS on

GeForce 8800GTX

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,

J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

Number of thread blocks modulo number of SMs results in

significant performance variation for small workloads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

An Approach to Writing CUDA Kernels
• Find an algorithm that can expose substantial parallelism,

we’ll ultimately need tens of thousands of independent

threads…

• Identify appropriate GPU memory or texture subsystems

used to store data used by kernel

• Are there trade-offs that can be made to exchange

computation for more parallelism?

– Though counterintuitive, past successes resulted from this strategy

– “Brute force” methods that expose significant parallelism do

surprisingly well on GPUs

• Analyze the real-world use case for the problem and select

a specialized kernel for the problem sizes that will be

heavily used

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Getting Performance From GPUs

• Don’t worry (much) about counting arithmetic

operations…at least until you have nothing else left to do

• GPUs provide tremendous memory bandwidth, but even

so, memory bandwidth often ends up being the

performance limiter

• Keep/reuse data in registers as long as possible

• The main consideration when programming GPUs is

accessing memory efficiently, and storing operands in

the most appropriate memory system according to data

size and access pattern

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Memory Systems

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Comparison of CPU and GPU

Hardware Architecture

CPU: Cache heavy,
focused on individual
thread performance

GPU: ALU heavy,
massively parallel,
throughput oriented

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor

 Cluster

SM Shared Memory

Streaming Processor Array

Streaming Multiprocessor

T
e

x
tu

re
 U

n
it

Streaming

Processor

ADD, SUB

MAD, Etc…

 Special

Function Unit

SIN, EXP,

RSQRT, Etc…

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

SM

SM

Constant Cache

R
e

a
d

-o
n

ly
,

8
k
B

 s
p

a
ti

a
l
c
a
c
h

e
,

1
/2

/3
-D

 i
n

te
rp

o
la

ti
o

n

64kB, read-only

FP64 Unit

FP64 Unit (double precision)

NVIDIA
GT200

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Graphics Processor

 Cluster

NVIDIA Fermi GPU Streaming Multiprocessor

GPC GPC GPC GPC

768KB

Level 2

Cache SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SFU

SFU

SFU

SFU

SM

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

SM

SM SM

Tex Tex Tex Tex

Texture Cache

64 KB L1 Cache / Shared Memory

~3-6 GB DRAM Memory w/ ECC 64KB Constant Cache

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NVIDIA Kepler GPU Streaming Multiprocessor - SMX

GPC GPC GPC GPC

1536KB

Level 2

Cache

SMX SMX

Tex Unit

48 KB Tex + Read-only Data Cache

64 KB L1 Cache / Shared Memory

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache

SP SP SP DP
SFU LDST

SP SP SP DP

16 × Execution block =

 192 SP, 64 DP,

32 SFU, 32 LDST

SP SP SP DP
SFU LDST

SP SP SP DP

 Graphics Processor

 Cluster

GPC GPC GPC GPC

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Peak Arithmetic Performance Trend

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Peak Memory Bandwidth Trend

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU PCI-Express DMA

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations

Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten.

Journal of Parallel Computing, 2014. (In press)

http://dx.doi.org/10.1016/j.parco.2014.03.009

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU On-Board Global Memory
• GPU arithmetic rates dwarf memory bandwidth

• For Kepler K40 hardware:

– ~4.3 SP TFLOPS vs. ~288 GB/sec

– The ratio is roughly 60 FLOPS per memory

reference for single-precision floating point

• Peak performance achieved with “coalesced”

memory access patterns – patterns that result in a

single hardware memory transaction for a SIMD

“warp” – a contiguous group of 32 threads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Memory Coalescing

• Oversimplified explanation:

– Threads in a warp perform a read/write operation that can be

serviced in a single hardware transaction

– Rules vary slightly between hardware generations, but new

GPUs are much more flexible than old ones

– If all threads in a warp read from a contiguous region that’s 32

items of 4, 8, or 16 bytes in size, that’s an example of a

coalesced access

– Multiple threads reading the same data are handled by a

hardware broadcast

– Writes are similar, but multiple writes to the same location

yields undefined results

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Using the CPU to Optimize GPU Performance

• GPU performs best when the work evenly divides

into the number of threads/processing units

• Optimization strategy:

– Use the CPU to “regularize” the GPU workload

– Use fixed size bin data structures, with “empty” slots

skipped or producing zeroed out results

– Handle exceptional or irregular work units on the CPU;

GPU processes the bulk of the work concurrently

– On average, the GPU is kept highly occupied, attaining

a high fraction of peak performance

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Grid/Block/Thread Decomposition

Padding arrays out to full blocks
optimizes global memory performance
by guaranteeing memory coalescing

1-D, 2-D, or 3-D (SM >= 2.x)
Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

…

1-D, 2-D, or 3-D
Computational Domain

1-D, 2-D, 3-D
thread block:

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU On-Chip Memory Systems
• GPU arithmetic rates dwarf global memory

bandwidth

• GPUs include multiple fast on-chip memories to

help narrow the gap:

– Registers

– Constant memory (64KB)

– Shared memory (48KB / 16KB)

– Read-only data cache / Texture cache (~48KB)

• Hardware-assisted 1-D, 2-D, 3-D locality

• Hardware range clamping, type conversion, interpolation

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NVIDIA Kepler GPU Streaming Multiprocessor - SMX

GPC GPC GPC GPC

1536KB

Level 2

Cache

SMX SMX

Tex Unit

48 KB Tex + Read-only Data Cache

64 KB L1 Cache / Shared Memory

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache

SP SP SP DP
SFU LDST

SP SP SP DP

16 × Execution block =

 192 SP, 64 DP,

32 SFU, 32 LDST

SP SP SP DP
SFU LDST

SP SP SP DP

 Graphics Processor

 Cluster

GPC GPC GPC GPC

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Communication Between Threads

• Threads in a warp or a thread

block can write/read shared

memory, global memory

• Barrier synchronizations, and

memory fences are used to

ensure memory stores

complete before peer(s)

read…

• Atomic ops can enable limited

communication between

thread blocks

=

+=

+=

+=

Shared Memory Parallel
Reduction Example

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example use of shared mem
__device__ float sumabsdiff_sumreduction(int tid, int totaltb, float *sumabsdiffs_s, float *sumabsdiffs) {

 float sumabsdifftotal = 0.0f;

 if (tid < warpSize) { // do the final reduction within a single warp only….

 for (int i=tid; i<totaltb; i+=warpSize) {

 sumabsdifftotal += sumabsdiffs[i];

 }

 sumabsdiffs_s[tid] = sumabsdifftotal; // write to shared memory

 }

 __syncthreads(); // all threads must hit syncthreads call...

 // perform intra-warp parallel reduction...general loop version of parallel sum-reduction

 for (int s=warpSize>>1; s>0; s>>=1) {

 if (tid < s) {

 sumabsdiffs_s[tid] += sumabsdiffs_s[tid + s];

 }

 __syncthreads(); // all threads must hit syncthreads call...

 }

 return sumabsdiffs_s[0];

}

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Avoiding Shared Memory Bank Conflicts:
Array of Structures (AOS) vs.

Structure of Arrays (SOA)

• AOS:

typedef struct {

 float x;

 float y;

 float z;

} myvec;

myvec aos[1024];

aos[threadIdx.x].x = 0;

aos[threadIdx.x].y = 0;

• SOA

typedef struct {

 float x[1024];

 float y[1024];

 float z[1024];

} myvecs;

myvecs soa;

soa.x[threadIdx.x] = 0;

soa.y[threadIdx.x] = 0;

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Use of Atomic Memory Ops

• Independent thread blocks can access shared

counters, flags safely without deadlock

when used properly

– Allow a thread to inform peers to early-exit

– Enable a thread block to determine that it is the

last one running, and that it should do

something special, e.g. a reduction of partial

results from all thread blocks

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example use of atomic counters
__device__ unsigned int tbcatomic[3] = {0, 0, 0}; // GLOBAL ATOMIC COUNTER

VARIABLE

__device__ void reset_atomic_counter(unsigned int *counter) {

 counter[0] = 0;

 __threadfence();

}

…….

 #if __CUDA_ARCH__ >= 200

 // setup shared variable

 __shared__ bool isLastBlockDone;

 if (tid == 0)

 isLastBlockDone = 0;

 __syncthreads();

#endif

…….

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example use of atomic counters
#if __CUDA_ARCH__ >= 200 // only compute capability 2.0 or greater have atomic ops

 if (tid == 0) { // check if we are the last thread block to finish and finalize results

 unsigned int bid = blockIdx.z * gridDim.x * gridDim.y + blockIdx.y * gridDim.x + blockIdx.x;

 sumabsdiff[bid] = sumabsdiff_s[0];

 __threadfence();

 unsigned int value = atomicInc(&tbcatomic[0], totaltb);

 isLastBlockDone = (value == (totaltb - 1));

 }

 __syncthreads();

 if (isLastBlockDone) {

 float totalsumabsdiff = sumabsdiff_sumreduction(tid, totaltb, sumabsdiff_s, sumabsdiff);

 if (tid == 0)

 sumabsdiff[totaltb] = totalsumabsdiff;

 reset_atomic_counter(&tbcatomic[0]);

 }

#endif

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Communication Between Threads in a Warp

• On the recent

Kepler/Maxwell GPUs,

neighboring threads in a

warp can exchange data

with each other using

shuffle instructions

• Shuffle outperforms shared

memory, and leaves shared

memory available for other

data

=

+=

+=

+=

Intra-Warp Parallel
Reduction with Shuffle,
No Shared Memory Use

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Avoid Output Conflicts,

Conversion of Scatter to Gather

• Many CPU codes contain algorithms that “scatter”
outputs to memory, to reduce arithmetic

• Scattered output can create bottlenecks for GPU
performance due to bank conflicts

• On the GPU, it’s often better to do more
arithmetic, in exchange for a regularized output
pattern, or to convert “scatter” algorithms to
“gather” approaches

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Avoid Output Conflicts:

Privatization Schemes
• Privatization: use of private work areas for workers

– Avoid/reduce the need for thread synchronization barriers

– Avoid/reduce the need atomic increment/decrement
operations during work, use parallel reduction at the end…

• By working in separate memory buffers, workers
avoid read/modify/write conflicts of various kinds

• Huge GPU thread counts make it impractical to
privatize data on a per-thread basis, so GPUs must use
coarser granularity: warps, thread-blocks

• Use of the on-chip shared memory local to each SM
can often be considered a form of privatization

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example: avoiding output conflicts when

summing numbers among threads in a block

N-way output conflict:
Correct results require costly barrier
synchronizations or atomic memory
operations ON EVERY ADD to prevent
threads from overwriting each other…

Parallel reduction: no output
conflicts, Log2(N) barriers

+=

=

+=

+=

+=

+=

Accumulate sums in thread-
local registers before doing any

reduction among threads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Off-GPU Memory Accesses

• Direct access or transfer to/from host memory or

peer GPU memory

– Zero-copy behavior for accesses within kernel

– Accesses become PCIe transactions

– Overlap kernel execution with memory accesses

• faster if accesses are coalesced

• slower if not coalesced or multiple writes or multiple reads

that miss the small GPU caches

• Host-mapped memory

– cudaHostAlloc() – allocate GPU-accessible host

memory

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Off-GPU Memory Accesses

• Unified Virtual Addressing (UVA)

– CUDA driver ensures that all GPUs in the system use

unique non-overlapping ranges of virtual addresses

which are also distinct from host VAs

– CUDA decodes target memory space automatically

from the pointer

– Greatly simplifies code for:

• GPU accesses to mapped host memory

• Peer-to-Peer GPU accesses/transfers

• MPI accesses to GPU memory buffers

• Leads toward Unified Virtual Memory (UVM)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Page Locked (Pinned) Host Memory

• Allocates host memory that is marked unmoveable in

the OS VM system, so hardware can safely DMA

to/from it

• Enables Host-GPU DMA transfers that approach full

PCIe bandwidth:

– PCIe 2.x 6 GB/s

– PCIe 3.x 12 GB/s

• Enables full overlap of Host-GPU DMA and

simultaneous kernel execution

• Enables simultaneous bidirectional DMAs to/from host

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Cards Will Become More Common

• Peak memory bandwidth bound by

area / perimeter of the GPU

processor die, pin count, etc.

• Apps bound by memory bandwidth

can be better served by multi-GPU

systems, multi-GPU cards

• Multi-GPU cards will likely become

more common as die-stacked

memory and fast GPU-to-GPU links

(e.g. announced NVLink) arrive

GeForce Titan Z

GeForce GTX 690

Tesla K10

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Acknowledgements
• Theoretical and Computational Biophysics Group, University of

Illinois at Urbana-Champaign

• NVIDIA CUDA Center of Excellence, University of Illinois at Urbana-

Champaign

• NVIDIA CUDA team

• NCSA Blue Waters Team

• Funding:

– NSF OCI 07-25070

– NSF PRAC “The Computational Microscope”

– NIH support: 9P41GM104601, 5R01GM098243-02

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Runtime and Architecture Support for Efficient Data Exchange in Multi-Accelerator
Applications Javier Cabezas, Isaac Gelado, John E. Stone, Nacho Navarro, David B. Kirk, and
Wen-mei Hwu. IEEE Transactions on Parallel and Distributed Systems, 26(5):1405-1418, 2015.

• Unlocking the Full Potential of the Cray XK7 Accelerator Mark Klein and John E. Stone.
Cray Users Group, Lugano Switzerland, May 2014.

• Simulation of reaction diffusion processes over biologically relevant size and time scales using
multi-GPU workstations Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida
Luthey-Schulten. Journal of Parallel Computing, 40:86-99 2014.

• GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular
Dynamics Flexible Fitting John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten.
Faraday Discussions, 169:265-283, 2014.

• GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.
J. Stone, K. L. Vandivort, and K. Schulten. UltraVis'13: Proceedings of the 8th International
Workshop on Ultrascale Visualization, pp. 6:1-6:8, 2013.

• Early Experiences Scaling VMD Molecular Visualization and Analysis Jobs on Blue Waters.
J. E. Stone, B. Isralewitz, and K. Schulten. Extreme Scaling Workshop (XSW), pp. 43-50, 2013.

• Lattice Microbes: High‐performance stochastic simulation method for the reaction‐diffusion
master equation. E. Roberts, J. E. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System

Trajectories. M. Krone, J. E. Stone, T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71,

2012.

• Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units – Radial

Distribution Functions. B. Levine, J. Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-

3569, 2011.

• Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics

Trajectories. J. Stone, K. Vandivort, and K. Schulten. G. Bebis et al. (Eds.): 7th International

Symposium on Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011.

• Quantifying the Impact of GPUs on Performance and Energy Efficiency in HPC Clusters. J.

Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J Phillips.

International Conference on Green Computing, pp. 317-324, 2010.

• GPU-accelerated molecular modeling coming of age. J. Stone, D. Hardy, I. Ufimtsev, K.

Schulten. J. Molecular Graphics and Modeling, 29:116-125, 2010.

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing. J. Stone, D.

Gohara, G. Shi. Computing in Science and Engineering, 12(3):66-73, 2010.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• An Asymmetric Distributed Shared Memory Model for Heterogeneous Computing

Systems. I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W. Hwu. ASPLOS ’10:

Proceedings of the 15th International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 347-358, 2010.

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi, M.

Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on Parallel Programming on

Accelerator Clusters (PPAC), In Proceedings IEEE Cluster 2009, pp. 1-8, Aug. 2009.

• Long time-scale simulations of in vivo diffusion using GPU hardware. E. Roberts, J. Stone,

L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09: Proceedings of the 2009 IEEE

International Symposium on Parallel & Distributed Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular Orbitals on GPUs

and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd

Workshop on General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM

International Conference Proceeding Series, volume 383, pp. 9-18, 2009.

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J. Stone.

Communications of the ACM, 52(10):34-41, 2009.

• Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy,

J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.

J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference on

Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling applications.

C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the 2008 Conference

On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. Proceedings

of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips,

P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J.

Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal, 93:4006-4017, 2007.

