Profiling on GPU

Filippo Spiga, HPCS, University of Cambridge
<fs395@cam.ac.uk>

2.3 UNIVERSITY OF

ltﬁib

4PV CAMBRIDGE

Demonstrating CUDA tools

CUDA SDK provides you useful tools to support GPU
programming:

* nvprof: CUDA command-line profiler
* nvvp: CUDA visual profiler
e cuda-gdb: CUDA debugger GDB-style

* cuda-memcheck: functional correctness checking suite

Live demo and then you are free to play with
provided examples and previous GPU code

Why Performance Measurement Tools?

* You can only improve what you measure

* Need to identify:
* Hotspots: Which function takes most of the run time?

* Bottlenecks: What limits the performance of the
hotspots?

* Manual timingis tediousand error prone
e Possibleforsmall applicationlike vectorAdd or matrix multiplication
* Impractical forlarger/more complex application
e Access to hardware counters (PAPI, CUPTI)

What Limits Communication with the GPU?

* PCle bus connects GPU to CPU/network
* Gen 2 (Fermi): 8 GB/sin each direction
* Gen 3 (Kepler): 16 GB/s in each direction

* Tesla GPUs have dual DMA engines

 Two memcpys (in different streams, different directions)
e Overlap with kernel and CPU execution

What Limits Kernel Performance?

* memory-bound : most of kernel time is spent in executing
memory instructions

* exploitshared memory, memory access coalescing, ...

* compute-bound: most of operationsare ALU-FPU
instructions.

* reduce branch divergence, interleave computation between ALU-
FPU and SFU*, and provide enough independentinstructions to
exploiting ILP.

e Latency-bound : poor math and memory overlapping
* You address memory first and then compute

* Units that execute transcendental instructions such as sin, cosine, reciprocal, and square root.

What can be captured...

Events API
 Sample hardware counters—hardware dependent

Metrics API

e Sample metrics (composition of hardware counters) —
hardwareindependent

Callbacks API
 callbacks for CUDA runtimeand driver API
 callbacksfor resourceandsynchronizationevents

Activity API

* recordingof asynchronousaccelerator activities (e.g. kernels
and memory copies)

* recordingof CUDA API, context and device events and more

Command Line Profiler (nvprof)

Usage:
nvprof [options] [CUDA application] [applicationarguments]

Options:

e --devices <device ids>

e --events <event names> (--query-events)
e --print-gpu-trace

e --print-api-trace

Source correlation requiresthat source/line information be embedded in
executable

* Availablein debugexecutables:nvcc -G
* New flag for optimized executables:nvcc -1lineinf

Command Line Profiler (nvprof)

The command line profileris controlled by environmentvariables, and can
be enabled by setting COMPUTE_PROFILE=1

COMPUTE_PROFILE_LOG: Specifies the filename for the output. Include

%d in the filename if you use multiple contexts and %p if multiple
processesrun on the same host (default valuesis “cuda_profile_%d.log”).

COMPUTE_PROFILE_CSV: set to 1 to enable CSV output

COMPUTE_PROFILE_CONFIG: Specifies the path to a configurationfile that
specifies what information/counters to collect. For a list of configuration
options please referto the documentationincluded with the toolkit.

export COMPUTE PROFILE CSV=1
export COMPUTE _PROFILE LOG="profile %p.csv”
export COMPUTE PROFILE CONFIG=profile.cfg

Sample configuration file profile.cfg

gpustarttimestamp
gridsize3d
threadblocksize
dynsmemperblock
stasmemperblock
regperthread
memtransfersize
memtransferdir
streamid
countermodeaggregate
active_warps
active_cycles

Interesting profile metrics

* instructions_issued, instructions_executed
Both incremented by 1 per warp
“issued” includesreplays, “executed” does not

e gld request, gst request
Incremented by 1 per warp for each load/store instruction
Instruction may be counted if it is “predicated out”

* 11 _global load miss,|1_global load _hit,
global store_transaction Incremented by 1 per L1 line (line
is 128B)

* uncached global load transaction
Incremented by 1 per group of 1, 2, 3, or 4 transactions
Better to look at L2_read request counter (incremented by
1 per 32B transaction; per GPU, not per SM)

Annotations: NVIDIA Tools Extension

Developer API for CPU code installed with CUDA Toolkit
(libnvToolsExt.so) that allow to:

* Naming
 Host OS threads: nvtxNameOsThread ()
 CUDA device, context, stream: nvtxNameCudaStream()

* Time Ranges and Markers
* Range: nvtxRangeStart(), nvtxRangeEnd()
* Instantaneous marker: nvtxMark ()

Focus profilingon region of interest 2 Reduce volume of profile data 2
Improve usability of Visual Profiler & Improve accuracy of analysis

Profile “just a bit” ...

3.

4.

5.

Includecuda profiler api.h

Add functions to start and stop profile data collection.
 cudaProfilerStart()isusedto startprofiling
« cudaProfilerStop() isused tostop profiling

Instruct the profilingtool to disable profilingat the start of the
application.
e nvprof --profile-from-start-off

Flush profile data to reduce profilingoverhead and perturbing
application behavior

e call cudabDeviceReset () beforeexiting. Doingso forces all
buffered profileinformation to be flushed.

Select the metrics required to be displayedand analyse the
application behavior

* e.g.nvprof --metrics flops dp

Useful nvprof metrics

nvprof --devices 0 --query-metrics
nvprof --metrics metric-1,metric-2,..

» achieved_occupancy: Ratio of the average active warps per active cycle to the
maximum number of warps supported on a multiprocessor

« sm_efficiency: The percentage of time at least one warp is active on a
multiprocessor averaged over all multiprocessors on the GPU

» flop_sp_efficiency / flop_dp_efficiency : Ratio of achieved to peak SP/DP floating-
point operations

» gst_throughput/ gld_throughput : Global memory store/load throughput

» gst_efficiency / gld_efficiency: Ratio of requested global memory store/load
throughput to required global memory load throughput. Values greater than 100%
indicate that, on average, the store/load requests of multiple threads in a warp
fetched from the same memory address

» gst_transactions / gld_transactions : Number of global memory load transactions

nvprof — Profile Data Import

Produce profile into a file

$ nvprof --analysis-metrics -o profile.out <app>

Import into Visual Profiler...

File menu -> Import nvprof Profile...

Import into nvprof to generate textual outputs

$ nvprof -i profile.out

$ nvprof -i profile.out --print-gpu-trace
$ nvprof -i profile.out --print-api-trace

(Little trick) Profiling parallel applications

Just make sure you do not overlap profile outputs...

mpirun -np <np> <mpi-args> \
nvprof --output-profile $out.$rank <nvprof args> \
<app> <app-args->

out = name of the outputfile

rank=uniqueglobal ID (e.g. MPI rank)
« MV2_COMM_WORLD_RANK for MVAPICH2
 MPI_RANKID for Platform MPI

+ OMPI_COMM_WORLD_RANK for OpenMPI

« PMP_RANK for Intel MPI

Note for the profiler

Most counters are reported per Streaming Multiprocessor (SM),
not entire GPU!

* Few exceptions, e.g.L2 and DRAM counters

A single run can only collect a few counters, Multiple runs are
needed when profilingmore counters

 Done automatically by the Visual Profiler
* Have to be done manually usingcommand-line profiler

Use CUPTI API to have your application collect signals on its own
* Counter values may not be exactly the same for repeated runs

Threadblocksand warps are scheduled at run-time

* So, “two counters being equal” usually means “two counters within a
small delta”

See the profiler documentation for more information!

(Little trick) Timing a kernel?

cudakvent _t start, stop;
float time;

cudakEventCreate(&start) ;
cudakEventCreate (&stop) ;

cudaEventRecord(start, 0);

kernel<<<grid, threads>>>(..);
cudaEventRecord(stop,0) ;
cudaEventSynchronize(stop);
cudakEventElapsedTime(&time, start, stop);

cudakEventDestroy(start);
cudaEventDestroy(stop);

