Electron Glasses: slow dynamics of a long-range interacting system

François Landes

ICTP, Trieste

Workshop on Accelerated High-Performance Computing in Computational Sciences

May 29, 2015

In collaboration with:

Markus Mueller (ICTP, Italy),

Matteo Palassini (UC Barcelona, Spain)

Ezequiel Ferrero (LiPhy Grenoble, France).

Physical Description

The System
The Model

Algorithms - Monte Carlo

The Sequential Algorithm Bottlenecks Solutions

Other Algorithms: Beyond Monte Carlo

Outline

Physical Description

The System
The Model

Algorithms - Monte Carlo

The Sequential Algorithm
Bottlenecks
Solutions

Other Algorithms: Beyond Monte Carlo

Physical System

- Semi-conductors with particular structure, (e.g. Inidium Oxide, In_xO)
- ▶ Low Temperature $(T \approx 4K) \Rightarrow$ slow, glassy dynamics
- Disorder (impurities, etc.)
 - ⇒ electrons are strongly localized
 - ⇒ electrons seen as "little balls" (high-school picture)

Model: geometry

- ▶ Square lattice, $N = L^d$ sites, d = 2 or 3 dims, $L \sim 32 256$ in 3D.
- ▶ Site $i \in [1, N]$ characterized by position \mathbf{r}_i
- ▶ Each site is either empty or occupied: $n_i = 0$ or 1
- ▶ Background charge: K = +1/2 on each site, balances the electrons' charges (there are KN e⁻)

Model: interactions

- ▶ On-site disorder: each site gets a bonus energy from disorder, $\Rightarrow \phi_i(n_i K)$, with random $\phi_i \in [-1, 1]$
- ▶ Aside from uniform background charge, no explicit screening ! ⇒ Coulomb interaction: $\sim \frac{(n_i - K)(n_j - K)}{|\mathbf{r}_i - \mathbf{r}_j|}$ (long-ranged !!)

Hamiltonian:

$$H = \sum_{i} \phi_{i} n_{i} + \frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{(n_{i} - K)(n_{j} - K)}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$
(1)

Local energy level:

$$\varepsilon_i \equiv \phi_i + \sum_{i \neq i} \frac{(n_j - K)}{|\mathbf{r}_i - \mathbf{r}_j|} \tag{2}$$

Dynamics

 \blacktriangleright jump from a to b: total energy changes by:

$$\Delta H = \varepsilon_b - \varepsilon_a - 1/\mathbf{r}_{ab}$$

- At T=0K, only transitions that lower the energy allowed: $\Delta H < 0$
- ▶ Electrons actually tunnel between sites (rate $\sim e^{-2r_{ab}/\xi}$), but let's use uniform rate 1.
- At T > 0, tunnelling accepted with rate min $(1, e^{-\Delta H/k_B T})$. No Ground State at T > 0.

Outline

Physical Description

The System
The Model

Algorithms - Monte Carlo

The Sequential Algorithm
Bottlenecks
Solutions

Other Algorithms: Beyond Monte Carlo

Sequential Algorithm

Monte-Carlo Dynamics:

- ▶ Pick a pair (a, b) at random
- ▶ Compute $\Delta H = \varepsilon_b \varepsilon_a 1/\mathbf{r}_{ab}$
- ▶ If Δ*H* < 0:

If
$$n_a=1, n_b=0$$
:
Do: $n_a=0, n_b=1$. Update all the ε_i .

Energy Update:

If jump $a \to b$ was accepted: $\forall i \in [1, N]$, do $\varepsilon_i + = \frac{1}{r_{ib}} - \frac{1}{r_{ia}}$. (except for i = a and i = b, it is a bit different).

Problems:

- ▶ I) Updating all the ε_i is \sim **O(N) operations**. Typically takes at least 50% of computing time, up to 80%.
- ▶ II) In real life, as time increases, the **dynamics slows down** (hence the name, electron **glasses**).
 - \Rightarrow In the simulation, the failure rate increases a lot !

I) Energy updates: The solution

In: 2 integers, a and b.

Out: N changes of float values.

Solution: "embarrassing parallelism":

1 thread updates the energy of 1 site. As many threads as sites.

So simple \Rightarrow *Shame*

Performance gain: at least $\times 2$, probably more like $\times 5$ (time spent in the updates becomes negligible, a few % of total time at most).

I) Energy updates: Performance

II) Fail rate of Monte Carlo steps: slowdown

II) Fail rate of Monte Carlo steps: the Parallel KMC Solution

As we converge to the Ground State, more and more jump attempts fail. ("Glassy" dynamics, logarithmic evolution).

In: N^2 possible jumps.

Out: 1 allowed jump.

Solution: *Kinetic Monte Carlo*:

M threads run in parallel, making independent random attempts. The first one (in natural order) to succeed is done. Other successes are thrown away.

Ferrero, E. E., Kolton, A. B., & Palassini, M. (2014). *Parallel kinetic Monte Carlo simulation of Coulomb glasses.* In 15TH INTERNATIONAL CONFERENCE ON TRANSPORT IN INTERACTING DISORDERED SYSTEMS (TIDS15) (pp. 71 - 76). AIP Publishing.

II) Fail rate of Monte Carlo steps: the Parallel KMC Solution

II) Fail rate of Monte Carlo steps: the Parallel KMC Solution: Performance

Outline

Physical Description

The System
The Model

Algorithms - Monte Carlo

The Sequential Algorithm
Bottlenecks
Solutions

Other Algorithms: Beyond Monte Carlo

Alternative (Complementary to KMC): energy-based search

Original Idea developed in:

Glatz, A., Vinokur, V. M., Bergli, J., Kirkengen, M., & Galperin, Y. M. (2008). *The Coulomb gap and low energy statistics for Coulomb glasses*. Journal of Statistical Mechanics: Theory and Experiment.

Palassini, M., & Goethe, M. (2012). *Elementary excitations and avalanches in the Coulomb glass.* Journal of Physics: Conference Series.

Alternative (Complementary to KMC): energy-based search

Case (1):

- Separate empty and occupied sites
- Sort occupied sites from higher to lower energy
- Sort empty sites from lower to higher energy

```
\begin{array}{l} \bullet \ \ \text{if} \ \varepsilon_{\textit{max}}^{\textit{occ}} > \varepsilon_{\textit{min}}^{\textit{empty}} \\ \quad \quad \text{then} \ \Delta H < 0 \ \text{for sure:} \\ \quad \Rightarrow \ \text{do this jump,} \ a \rightarrow b. \end{array}
```

Jump independent from the distance r_{ab} !

```
Sorting is \sim O(N \log N), but also done in parallel by Thrust.
```

Alternative (Complementary to KMC): energy-based search

Case (2):

- Separate empty and occupied sites
- Sort occupied sites from higher to lower energy
- Sort empty sites from lower to higher energy

$$\begin{array}{ll} & \varepsilon_{\it max}^{\it occ} < \varepsilon_{\it min}^{\it empty} & \Rightarrow {\sf Case} \ (2). \\ & \Rightarrow {\sf Define} \ \mu = (\varepsilon_{\it max}^{\it occ} + \varepsilon_{\it min}^{\it empty})/2 \end{array}$$

Particles in site with $\varepsilon_{a} \in [\mu-1, mu]$ may be allowed to jump to empty sites with $\varepsilon_{b} \in [\mu, \varepsilon+1]$, thanks to the term $-1/r_{ab}$. Other pairs are forbidden to jump.

Sorting is still $\sim O(N \log N)$, and also is still done in parallel by **Thrust**.

Alternative (Complementary to KMC & Energy-based Search): Systematic Search

After a sufficient number of failures at doing Parallel KMC steps, or if an incomplete exploration of the "case (2)" possibilities yields nothing, try a full search ($\sim N^2$ possibilities!)

⇒ allows to **exactly** check if the simulation is finished.

With GPU, this computation is manageable. (parallelism strategy: ${\it N}-1$ attempts per thread).

But in the end, only a debugging tool.

Summary:

Program main functions:

- ▶ When a search finds a jump allowed, the update of the system's state is done in **parallel** (*N* **threads**).
- ▶ Perform KMC search: $M = 2^8 2^{18}$ threads in parallel.
- ▶ If no success in the KMC search:
 - Sort the energies of occupied and empty sites, using the parallel thrust library.
 - ▶ Find jumps in Case (1) or Case (2).
 - ▶ If Case (2) is not exhaustive, and no jump found:
 - Systematic Search [optional]

When no jump is found: (pseudo-) **Ground State** reached!

Additional Trick:

Sort the energies once, then attempt several jumps before starting any other kind of search (KMC or re-sorting the jumps).

Thank You!