

HPC

"Introduction to High Performance Computing (HPC)"

Clement Onime – onime@ictp.it

Information & Communication Technology Section (ICTS)
International Centre for Theoretical Physics (ICTP)

Outline

Definition of HPC

Explore uses and impact of HPC

Open discussion

Paradigm of Science

• Observe

• Theorize

• Experimentation

Now, less expensive

Also, in certain fields, the observe phase is replaced by Simulation. E.g. Study of the early Universe...

Some uses of computers

- Data Collection
- Data analysis
- Visualizations
- Producing reports
- Information exchange
- Communicating

Challenges of growth

- Increasing complexity.
 - Problems have become too hard, expensive, slow, controversial or dangerous.
 - Multiple data collection sites: national or international
 - Bigger data sets (aggregates of sources)
 - teams of researchers with diverse expertise, require many interactions.
 - Solutions are needed now (as fast as possible) to be useful.

In science

- Scientists are challenged to
 - Tackle complex theories numerically
 - Overcome "limitations" in experiments: study (virtual) experiments, where the boundary conditions are greater than what is physically possible.
 - Benchmark and improving correctness of models and theories.

Examples:

- ·... too HARD
 - e.g. building large wind tunnels
- •... too EXPENSIVE
 - building a throw-away passenger jet
 - Simulate lasers behavior
- ·... too SLOW
 - waiting for climate or galactic evolution
- ... too DANGEROUS or CONTROVERSIAL
 - Research on nuclear or radioactive material
 - stem cell research

Solution: Bigger computers?

- Traditional
 Supercomputers
 - Specially built computers
 - Expensive to create or grow
 - Steep learning curve which cannot be readily reused.
 - Difficult to adapt or repurpose
- Alternative is bigger computations

A Definition:

High Performance Computing encompasses a collection of "powerful":

- hardware systems
- software tools
- programming languages
- generic programming approaches

All coordinated together to obtaining faster results to bigger problems.

Some characteristics

- HPC focuses on improving productivity
- HPC can happens on:
 - Single workstation, laptop, smart-phone or multi-core devices such as exotic platforms (Accelerators, GPU, FPGA).
 - HPC become more powerful when computers/devices are clustered together.
 - Linux/AIX/Windows/MacOS

The Opportunity

Source: IDC, Gartner, Morgan Stanley

HPC by clusters of nodes (normal PC)

- •Many computers (nodes) interconnected by high speed network (infiniband).
- Commodity clusters
- •Hybrid platforms that supports both shared & distributed architecture & programming models.

HPC clusters / parallel processing

- Hardware
 - Commodity processors give higher performance at lower costs
 - Networking advances give high speed, low latency
 - Easier to integrate into existing networks
 - Costs, Lower initial, running & upgrade
- Versatile
 - Can implement MPP or DSM, Network Ram, Parallel I/O (RAID) & multipath communication.

HPC cluster architecture

Major components of a HPC cluster

- PC Computers
 - CPU Single core, dual core, six-core, quad-core, SMP or others...
 - Network Interface Card (ethernet, Myrinet or Infiniband)
 - Operating system (thin, fat, micro-kernel, etc)
- High speed network
 - Gigabit, Myrinet, Infiniband
- Cluster middleware
 - Resource Manager, shared storage, Parallel FS, Parallel Memory, SSI
- Parallel programming environments
 - MPI, PVM, CUDA, debugger & profilers, etc
- Applications
 - Serial, sequential OR parallel/distributed

HPC based Supercomputers

- Supercomputers
 - Built using clusters of normal computers
 - In-expensive to create or grow
 - Software is what already know and use.
 - Easy to adapt or repurpose

- Quad-core AMD Opteron CPUs
 - 3,072 nodes * 1 CPU * 4 cores
 - 8 GB memory / node
- 12,888 cores and 24.5TB of RAM
- Now only a PART of a bigger HECToR!

JuRoPA in Germany

- Combination of Juropa-JSC & HPC-FF
- •Intel Xeon X55xx (Nehalem-EP) quad-core processors
- •3,288 nodes * 2 CPUs * 4 cores
- •24 GB memory / node
- •Total of 26,304 cores, 79 TB main memory
- •308 teraflops peak performance

TOP 500

- World wide Ranking of super-computers
 - Twice a year exercise
- See http://www.top500.org/
- Key indicators:
 - Country leaders
 - Supercomputing is now predominantly HPC based and running the Linux operating system

Top 500 supercomputers

(by countries)

2010

2015

Source: http://www.top500.org/statistics/treemaps/

Top 500 supercomputers

(by Operating Systems)

2010

2015

Source: http://www.top500.org/statistics/treemaps/

Top 500 statistics

Application Area System Share from November 2011

Vendors System Share from June 2015

Source: http://www.top500.org/statistics/treemaps/

Example from Material-Science

Example from Climate Modeling and Weather Forecast

OpenFOAM: An Open Source SW for Engineering Modeling

Oil and gas

- Production facilities for oil & gas
- Pipeline systems
- Tank farms and underground storage facilities
- Refineries and petrochemical plants

Water and environment

- Water supply
- Wastewater treatment & disposal
- Waste treatment & disposal
- Hydropower, dam and river engineering

Energy

- Thermal power plants
- Sea water desalination plants
- Renewable energy
- Climate protection
- Transmission and distribution systems

Civil engineering and infrastructure

- Airports
- Roads
- Railway systems
- Tunnels and caverns
- Buildings and structures
- Alpine engineering

Oil & GAS

A typical marine seismic acquisition survey - a marine vessel towing energy sources (airguns) and sensors embedded in streamers, sensors may be "10m apart on 10 or more streamers each of which may extend >10km long.

Shot gather = data recorded by all sensors from a single source detonation, typically there are thousands of sensors and thousands of source locations.

With shots spaced "20x20m apart and survey sizes of a few thousand sqkm common... a typical survey could have >50Tb of raw data— "50,000 shots on a "20x20m grid over "2000sqkm, recorded on "10000 sensors, sampled every 2ms for 6000ms 'listening time'.

Image and pattern analysis

Economic impact Airlines

System-wide logistics optimizations evaluated on HPC systems save approx. US\$100 million per airline per year.

Automotive Design

Major companies use (500+ CPUs) in CAD and CAM for crash testing, structural integrity and aerodynamics saving over US\$1 billion per company per year.

Physics

Detectors at the Large Hadron Collider at CERN, Geneva

- Set to produce several *Petabytes* (10¹⁵ bytes) of data per year
 - a <u>million times</u> the storage capacity of the average desktop computer;
 - accounts for nearly 10% of all the information produced by humans each year.

Performing the most rudimentary analysis of the LHC data will require close to 20 TeraFlops (a trillion floating-point operations per second)

Animations

- The movie Shrek 3, consumed close to 20 million CPU render hours
- Each frame is rendered at DreamWorks Animation, with more than 1,000 Linux desktops and more than 3,000 server CPUs
- Each frame is assigned to a different node of the renderfarm by grid software (using Platform LSF, a commercial Linux package), so that many frames can be output simultaneously.

Formula 1 Racing

Speedo LZR Racer Swimming

- 79 out of 105 world records in 2008.
- CFD technology from ANSYS was used to predict fluid flows around the body.

Strategically placed polyurethane panels

(designed by NASA).

Product Design Procter & Gamble

Packaging & products designed on HPC systems.

Biology

Protein Folding

1 Protein
300 amino acid
~32,000 atoms
1 milisecond

Conclusion

- HPC is for everyone who will like to improve their work as it can lead to faster solutions, better science and informed decisions, more competitive products!
- HPC systems can make research work, smarter, conducive and enable the delivery of world class results faster.
- Commodity based Linux clusters can give super computer class computing for a fraction of the cost and open new areas of development.

Thanks for your attention!!

