Review of basic HPC computing
terms/terminology

onime@ictp.it

mailto:onime@ictp.it

Contents

Revision of concepts

Parallelism
— What, why and how

Parallel Computing platforms

— Multi-cores, many-cores to supercomputers

Parallel programming paradigm
— Shared memory - Threads (POSIX/OpenMP)
— Message Passing

Books & on-line reference materials

— Books

— An Introduction to Parallel and Vector Scientific computing by
Ronald W. Shonkwiler & Lew Lefton, Cambride texts in applied
mathematics, 2006

— Parallel Programming with MPI by Peter S. Pacheco, Morgan
Kaufman Publishers, 1997

— On-line materials

— Stanford University CS Education Library
http://cslibrary.stanford.edu/

— Lawrence Livermore National Laboratory
https://computing.linl.gov/?set=training&page=index

— Durham University
http://www.dur.ac.uk/resources/its/info/guides/

REVISION

Sectional Outline

Computer hardware
Programming languages
Tools for programming

Data types (integers & floats)
Operators

Statements

File operations

Von Neumann Architecture

* General requirements for electronic
computers (1945).

— Main components: Memory, control unit,
Arithmetic Logic Unit (ALU) and input/output unit

— Classically used for designing all computers/CPUs

* Proposed stored/changeable programs
executed sequentially.

CPU Computer hardware

* Main parts —
— CP
U Register B
— Memor
o Y Register C ALU
— Data bus
Register D

e Bottleneck(s)

Program counter

Stack pointer

Overview of CPU

Programming languages

* Native/executable computer/machine language
— Assembly code

* Human readable languages
— Interpreted (single executable with different program
file as input)
e Perl, python or tcl

— Compiled (transforms readable input into executable
code

* Fortran& C
— Java is semi compiled into byte-code

Useful tools

Creating and modifying program source code
— Editors (may include syntax highlighting checking)

Translating source code into machine or byte
code

— Compilers (identify & highlight errors in source code)
Tracing execution or runtime code for errors
— Debuggers

Integrated Development Environments
— Combine all above tools in one interface.

Computer Data types - Integers

* Integer
— Whole numbers, typically sighed representations
— Char (8 bit): -127 <x < 128
— Short (16 bit): -32768 < x < 32768
— Int : 16 or 32bits
— Long (32 bit): -2 billion < x < +2 billion
— Long long (64 bits): ...

— Notes:

* Unsigned types basically double the maximum possible
positive value e.g unsigned short is 0 < x < 65536

Computer Data types - Floats

 Float

— Numbers having two parts separated by a decimal
point

— Single precision (32 bit, 6 digits after decimal)
— Double precision (64 bit, 15 digits after decimal)
— Long double (even bigger)

— Notes:

e Standard is double, float(single) may be used to save
memory

* Always In-exact so equality test should be avoided

Operators

* Arithmetic operators
(/*+- %)
* Relational
==l=><<=>=)

* Assignment

What about += and -=

Statements

Executable * Classify the following
Non-executable X=42
break
Control o
Input/output fopen
Built-in functions printf
Sqrt
Functions y<5
Subroutines Char * memcpy()
&&

Logical !

File operations

* |nput
— Sometimes can differentiate between text and
binary files
— Sequential or random
 QOutput
— Create non existing

— overwrite or clobber existing
— Or append

* Fopen, printf, scanf, fgetc, fclose, fputc, ungetc

Exercise 1

CONCEPTS OF PARALLELISM

Section outline

Parallel computing — a definition

Why is it important?

Classification of computers
Classification by memory architecture
Programming models

What is parallel computing

* Serial computing

— Single program broken into parts, parts broken
into single instructions, single instructions run one
at a time on single CPU

* Parallel computing

— Program broken into parts, each part broken into
single instructions that maybe run concurrently on
different CPU(s)

* Simultaneous use of multiple compute
resources to solve a computational problem

Why Parallel computing
modeling real world

e Useful as it can closely model the real world
situations:- Many complex interrelated events
happening at the same time within a temporal
sequence. E.g: rush hour traffic at big junction,
and rain...

Why Parallel computing

* Only way to make optimal use of new/
evolving generations of CPU processors. E.g:
dual core and beyond.

. .Memory Controller
~ ° NDDQ, V-Uncore

V-Core V-Core

"L Y ncoreq: e IE

Intel Westmere CP

Pentium |

From single- to multi-core

Core

Cache

Core i7- 9xx (4 cores, 8 threads)

Memory Controller

II 1 of

Shared L3 Cache

how and why CPU evolved

Pentium I Pentium Il

Presentation from ICHEC, Ireland

Now many-cores

* Single computer

— 2x 8 core CPU
CUDA — 2 x 2483 Nvidia cores
 CUDA
R H o N
‘épu -épu ‘céu vcéu ‘céu..'.céu ’,C.O.S'céu cw céu'..;céub - NV|d|a SpeCIfIC

NEBEEE

| L2 Shared Constants| Texture Shared Constants| Texture] O pe n C L

Mem | GMem

— Same executable
= software can run on cpu
and/or gpu

— Distributed/networked
systems

Classification of computers

* Flynn Taxonomy from 1966
— Single instruction, single data (SISD)
e E.g: Serial computing
— Single instruction, multiple data (SIMD)
* E.g: classical GPU & CPUs
— Multiple instruction, single data (MISD)

* Few experimental examples

— Multiple instruction, multiple data (MIMD)
* E.g clusters, super-computers

Classification by memory architecture

 Shared memory
— UMA (SMP) & NUMA & ccNUMA

* Distributed memory

— Interconnect between computers:

* Gigabit Ethernet ~ 1gbs - 10gbs, Myrinet ~ 10 gbps,
Infiniband ~ 10 gbps — 75 gbps

* Hybrid-distributed

— Shared memory + distributed memory

Classification by memory architecture

 Shared memory
— Uniform Memory Access
— Non Uniform Memory Access

Shared Shared

D D

Shared Shared Shared
memory memory

memory

UMA NUMA

Example of NUMA Super Computer

Blacklight (Pittsburgh Supercomputing Center)

SGIl UV 1000 ccNUMA

512 x quad-core Intel Xeon
7500 (2.27GHz) processors
= 4,096 cores

2 x 16 TB of memory (each
accessible as single memory
space)

Processors & memory
connected through NUMAIink-
3)

(15GB/s, 1us latency)

US$ 2.8m

HPC Course 26

Shared Memory system

pros &cons

ADVANTAGES:

Global address space provides a user-friendly programming perspective to memory (such as
with the OpenMP API)

Data sharing between tasks is both fast and uniform due to the proximity of memory to the
CPUs

DISADVANTAGES:

Need for cache-coherency

Lack of scalability between memory and CPUs. Adding more CPUs can geometrically increase
traffic on the shared memory-CPU path, and for cache coherent systems, geometrically
increase traffic associated with cache/memory management.

Programmer responsibility for synchronization constructs that ensure "correct" access of
global memory (i.e. prevent race conditions)

Distributed Memory system

schema

Processor

Processor Processor

Processor
+ cache

+ cache

+ cache + cache

‘ Memory I— I/O ‘ Memory I— I/O | Memory '— I/O

Interconnection network

Memory I/O

/0 B Memory e

Processor

Processor
+ cache

Processor

+ cache + cache

© 2007 Elsavier, Inc. All rights resaerved.

Slide from Introduction to
HPC by ICHEC, Ireland

Distributed Memory system

interconnection topologies

shared bus 2-D mesh
P PN P

line
ST, P

fully connected

hypercube

Figure 5.6: Five important interconnect network topologies.

Slide from Introduction to
HPC by ICHEC, Ireland

| ﬁ

The choice of the interconnection

has a STRONG impacts of the

communication performance

« Bandwidth

» Latency
Topology degree | diameter avg. dist. | bisection | tot. BW (links)
Bus 1 1 1 1 |
Line 2 N -1 N/2 1 N -1
2D Mesh 4 |2(/N-1)| 2VN/3 vN 2N — 2N
Hypercube(2-cube) | log, NV log, N (logy N)/2 N/2 (Nlogy N)/2
Fully Connected N-—-1 1 1 N2/4 N(N —-1)/2

Table 5.1: Some common interconnect topologies. N, number of total nodes.

Distributed Memory system

pros &cons

ADVANTAGES:

*Memory is scalable with number of processors. Increase the number of processors and
the size of memory increases proportionately.

*Each processor can rapidly access its own memory without interference and without the
overhead incurred with trying to maintain cache coherency.

Cost effectiveness: can use commodity, off-the-shelf processors and networking.

DISADVANTAGES:

*Programmer is responsible for mapping data structures across nodes

*Programmer is responsible for coordinating communication between nodes when
remote data is required in a local computation (called message-passing)

*Access to remote memory is significantly slower than to local memory

Currently, only low-level programming API's (such as MPI) are available to perform
message-passing between nodes

Super Computer Example

Cray T3E

A fully distributed memory machine
designed to scale from 8 to 2176
nodes. Each node had between
64MB and 2GB or local RAM.

A 1480-processor T3E-1200 was the
[first supercomputer to achieve a
il performance of more than 1 teraflops
| ‘“ running a computational science

application, in 1998

- —

N\ S N\

http://en.wikipedia.org/wiki/Teraflops
http://en.wikipedia.org/wiki/Computational_science

Distributed Shared Memory system

Processor
+ cache

110 | Memory I—

Processor
+ cache

schema

I/O ‘ Memory I—

Processor
+ cache

I/O | Memory '—

Processor
+ cache

I/O

Interconnection network

Processor
+ cache

Processor
+ cache

£ 2007 Elsavier, Inc. All rights resarved.

32

Processor
+ cache

Processor
+ cache

I/O

Introduction to HPC

Distributed Shared Memory system

pros & cons

ADVANTAGES:

* Exploits the advantages of both shared and distributed-memory architectures at
different levels.

* Can exploit both shared and distributed-memory programming paradigms
(OpenMP and MPI) to solve difficult tasks

* Can be built from commodity processors and interconnects.

DISADVANTAGES:

 The same disadvantaged of a pure Shared Memory system
 The same disadvantaged of a simple Distributed system

—> IDEA: explore new strategies like mixing parallelization

A full hybrid system

standard hardware plus accelerators

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

I/O | Memory I— I/O ‘ Memory I— I/O | Memory '— I/O
Directory GPU Directory GPU | | Directory GPU Directory GPU

Interconnection network

Directory GPU Directory GPU Directory GPU Directory GPU
I/0 | Memory I——(D lMemory I— I/O | Memory'— I/0

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

£ 2007 Elsavier, Inc. All rights resarved.

Slide from Introduction to
HPC by ICHEC, Ireland

A full hybrid system

pros & cons

ADVANTAGES:

e Accelerators (GPUs) can speed-up the calculation up to 100x times!

DISADVANTAGES:
* The same disadvantaged of a pure Shared Memory system;
* The same disadvantaged of a simple Distributed system;

* Accelerators are separated from the system (like a PCl card), they do not share the
memory with the host system;

e Accelerators require their own programming environment.

-2 A little bit of work for potentially huge advantages. Think about that.

many core Super Computer

“Tianhe-1A"

National Supercomputing + 14,336 x Intel Xeon X5670 hex-
Center in Tianjin core processors.

(China) - 7,168 Nvidia Tesla M2050

GPUs.

« 2,048 NUDT FT1000 (home-
grown CPUs).

 Total memory: 262 TB

« Custom proprietary
interconnect — Arch — 160 Gbps
(2x Infiniband).

4.7 petaflops

Novel Architectures

"Roadrunner"
DOE/NNSA/LANL Hybrid Design:
(US)

* 12,960 IBM PowerXCell 8i
« 3.2 GHz
1 general purpose core
8 performance cores

* 6,480 AMD Opteron
e Dual-core, 1.8 GHz

Node:
* Cell attached to Opteron core

1.37 petaflops

Clusters

* Many computers
(nodes) interconnected
by high speed network.

e Commodity clusters

* Hybrid supports both
shared & distributed
architecture &
programming

Advantages

* Exploits the advantages of both shared and
distributed-memory architectures at different levels.

* Can exploit both shared and distributed-memory
programming paradigms (OpenMP and MPI) to solve
difficult tasks.

e Can be built from commodity processors and
Interconnects.

Examples of Clusters

HECToR (XT4 component), U.K

- Cray XT4 supercomputer
* Quad-core AMD Opteron CPUs
3,072 nodes * 1 CPU * 4 cores
8 GB memory/ node

» 12,888 cores and 24.5TB of RAM

* Now only a PART of a bigger HECToR!

JUuROPA in Germany

*Combination of Juropa-JSC & HPC-FF
Intel Xeon X55xx (Nehalem-EP) quad-core
processors

*3,288 nodes * 2 CPUs * 4 cores

*24 GB memory / node

*Total of 26,304 cores, 79 TB main memory

+308 teraflops peak performance

Examples

MareNostrum (Spain)

2,560 computing nodes, each with dual
IBM 64-bit PowerPC 970MP processors
running at 2.3 GHz, 10,240 CPUs in total.

*It is capable of 63.83 teraflops and a peak
performance of 94.21 teraflops.

*It occupies only 120 m? (less than half a
basketball court).

It was largely constructed in two months in
* Madrid and was installed in the Barcelona
Supercomputing Center, Spain.

http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/PowerPC
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Gigahertz
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Teraflop
http://en.wikipedia.org/wiki/Square_metre
http://en.wikipedia.org/wiki/Basketball
http://en.wikipedia.org/wiki/Madrid
http://en.wikipedia.org/wiki/Barcelona_Supercomputing_Center
http://en.wikipedia.org/wiki/Barcelona_Supercomputing_Center

BlueGene

JUGENE
Juelicher BlueGene/P
(Germany)

*294 912 cores made up from:

72 racks

Each rack has 32 node cards
Each node card has 32 compute
cards

Each compute card has 2 chips
and 2GB of local memory

Each chip has 2 cores

3 parallel communication networks
1 petaflop peak performance

Programming parallel computers

* Models

e Shared Memory (no threads)
Threads

Distributed memory

Data parallel

Hybrid model

Single Program Multiple Data
Multiple program multiple data

* Programming models are independent of
underlying hardware & memory architecture

Shared memory (no threads)

Tasks share common address space

Read & writes to common address space is
asynchronous

Simplified development but poor data locality
May require locking and semaphores
Many different running programs/executables

Implementations
— POSIX Shared Memory (shm)
— Mapped memory (side effect)..

Shared memory (no threads)

POSIX shared Memory

Well defined standard

Works across different
executables

Can survive across
processes until O.S reboot

Mapped memory

Side effect

Multiple processes via
fork() call

Mapping must occur before
forking.

Destroyed when all
processes exit

Shared memory (threads)

Single process with multiple execution paths
Thread scheduling & execution is by O.S

Threads may have private data but share
common global address space as peers.

Many threads can execute same
subroutine/functions at same time (thread safe).

Two main standards POSIX & OpenMP
Portability issues

Shared memory (threads)

Thread API

— Apropos pthreads

Compiling threads(gcc & icc)

— Use -pthread option

Creating threads

— Use pthread create

— Limits on number of threads by O.S

Exiting

— Use pthread_exit, pthread_cancel, pthread_join,

pthread_detach

Stacksize could be an issue

Shared memory (threads)

POSIX threads

May require some parallel
coding

C Language only
Also known as pthreads
Requires attention to details

OpenMP threads

e Can work in serial code as it
is compiler directive based

* Availablein C, C++ & Fortran

* (Can be used to gradually
parallelise a serial code

* Simple and easy to use

OpenMP

* Code is divided into blocks and parallelisation
is in blocks

* API

— Compiler directives, runtime functions/routines &
environmental variables

* Easy as parallelization by addition of just 3 or
4 lines/directives.

OpenMP

_r

Gnu Compiler flags -fopenmp -fopenmp

Intel compiler flags -openmp -openmp

Compiler directives ISOMP PARALLEL #pragma omp parallel
Loop contruct ISOMP DOSCHEDULE #pragma omp for schedule
Barrier ISOMP BARRIER #pragma omp barrier

Critical section ISOMP ATOMIC H#pragma omp atomic

Distributed memory

* Message Passing
— Each task has it’s own dedicated memory.
— Task communicate by sending messages
— Multiple tasks can run on same machine

— Data transfer requires coordination between 2 or
more tasks

— Programmer is responsible for all parallelism
— Implementations: MPICH, LAM & OpenMPI

OpenMP]

* Available on all HPC/hardware platforms
— Shared, distributed memory or hybrid

I T C

Compiler wrapper mpif77, mpif90 mpicc, mpic++
Runtime helper Mpirun Mpirun
Header file mpif.h mpi.h

Binding CALL MPI_xxxx MPI_xxxx

OpenMP]

| e nciuse e * Communicators
Declarations, prototypes, etc. — Global collection

Program Begins

Serial code - U se

- MPI_COMM_WORLD
llﬂﬂlalllﬂ MPI environment Paralle! code begins - -
- * Groups

wmam,mwgt passing calls — set of processes that

may communicate

- * Ranks
' Terminate MP| environment parajlef code ends

— Unique ID of each MPI
process (0 to N-1)

Serial code

Program Ends

OpenMPI communication

* Point-to-Point Frocessort Frocessors
— Types

* Synchronous

* Blocking
* Non blocking

— Order & fairness

e Collectives

broadcast scatter

— All or none
— Broadcast useful for data J J J J _/ J _/
distribution L/ Sl

16
— Blocking type :%9 md‘:‘)

Data Parallel

Parallelism is focused around operations on
data

Data is organised in common structure such as
array (1, 2 or 3D)

Tasks work collectively on same data structure
but each task has a different range or portion.

All tasks perform same operation on data.

Can be carried on shared or distributed
memory architecture systems

Data parallel implementation

* Program usually have to be written from the
ground up as data parallel.

* Requires a data parallel compiler(or library)
— Included in Fortran 95.

 Compiler directives used to specify
distribution and alignment of data

Hybrid Model

Combines one or more of the previously
described programming models
Common is OpenMP + MPI

— Openmp for thread computation using local on
node data

Also GPU + MPI

— CUDA/OpenCL for computation on local intra-
node data

Good for multi-core/many cores..

Single Program Multiple Data

* SPMD

— single executable all starting together but each
running different tasks or with different data

— May include logic for different executables to only
process individual tasks and not full program

— Individual tasks maybe implemented using
different parallel programming model.

Multiple Program Multiple Data

e MPMD is similar to SPMD

— Running tasks are different executables running at
the same time

— More useful for functional decomposition

Designing a parallel program

Step 1: Decomposition
|

* Breaking the problem into |

- — §

tasks (discrete chunks of l—
work) e

— Functional decomposition is
based on tasks to be done.

task 2 l | task 3

— Domain decomposition is
based on data partitioning

il

w w

Land/Surface Model Il '

Domain decomposition

| " 1D EU—] P T T T |
BLOCK CYCLIC
task 0 task 1 task 2 task 3

- = “ H

BLOCK, * * BLOCK BLOCK, BLOCK

cYCLIC, * *, CYCLIC CYCLIC, CYCLIC

Designing a parallel program

STEP 2: Communication

* Iscommunication required?
: R, 0, 0,1 B, 0, 0,0
— Embarrassingly parallel (no P OYY Oeoww

communication needed)

— If yes then consider !J, IEQ,
 cost, synchronous, latency/ broadcast scatter
bandwidth
* scope @, 0, 0,0 1 3 § 7
[50) Y

gather reduction

Scalability & Amdahl’s Lam

* Speedup =1/(1-P)

* Speedup = 1/((P/N)+S)
— P = parallel fraction
— N = no of processors
— S =serial fraction

* Scalability

— Some problems do
improve with increasing
dimension.

