

Measuring and Optimizing NFS/NAS performance

Dr. Clement Onime onime@ictp.it

Overview

NAS

Measuring performance

Optimizing/improving performance

Network Attached Storage

- Generic term for storage devices that provide scalable storage and file-system for shared file level access.
- Wide range of commercial products and non-commercial

NAS: Commercial products

- Commercial NAS
 - Dedicated motherboards optimized for
 - I/O
 - Low power
 - Low to medium range
 - Custom Web User interface
 - Limited range of applications
 - High End
 - Performance and high availability
 - Data protection

NAS: Commercial or non-commercial

- Non-commercial
 - Choose your own hardware
 - Doing it yourself (DIY)
 - Regular Unix O.S. server
 - » Linux/FreeBSD
 - Free implementations
 - Customized, stripped down Unix distributions
 - » NAS4Free, FreeNAS, OpenFiler, etc..

Notes on NAS products for HPC

- Scalable Capacity
 - Maximum capacity
 - Limits on FS
- Reliability
 - Periodic testing of individual hardware components
 - Immediate reporting of faults
 - Data-protection rebuild/recovery time
 - File system check (fsck) or recovery time

- Data protection
 - Block level protection
 - Redundant Array of Independent Disks (RAID)
 - Data replication to another device in near real-time
 - Ability to back-up data directly.
- Running Costs
 - Parts, licenses, expansion
- Interfaces
 - Throughput and concurrent access

Data protection of RAID levels

Level	Useable capacity	Data protection
RAID0	Sizemin * n	None
RAID1	Sizemin	Failure of one single disk
RAID5	Sizemin * (n – 1)	Concurrent failure of one single disk
RAID6	Sizemin * (n – 2)	Concurrent failure of two disks
RAID1+0	Sizemin * (n/2)	Concurrent failure of more than two disks

Hardware RAID

Characteristics	Hardware RAID	BIOS RAID	Software RAID
Cache RAM	dedicated	shared	shared
Battery backup unit	Yes (48 hours)	No	No
Raw data disk Portability	Not recommended (Works for same controller family)	Not sure	Yes (works for same O.S)
Configuration tool	Dedicated firmware based	Firmware+Host O.S	Host O.S
Hot disk replacement	yes	No recommended	Not recommended
Performance enhancement	Yes (faster)	none	none

Notes on hardware RAID Volumes

- Typical unit presented to O.S.
 - Provisioning is mostly about ability to expand
 - Reduction may require destroying and make a new one
- States
 - NORMAL
 - DIRTY
 - DEGRADED

Network File System

- Version 3 (NFS or NFSv3)
 - Most widely deployed implementation
 - Simple security system
 - IP address based
 - UID user authentication with POSIX/Unix permissions and ability to exclude UID=0 (root user).
- Version 4 (NFSv4)
 - Improved security thanks to kerberos 5 user authentication
- Version 4.1 (pNFS)
 - Improved performance: Separating metadata from data
- Clients ← → Server architecture

MEASURING NFS PERFORMANCE

Slowdown in performance

- Some general causes
 - Faulty connectivity (network)
 - Bad/faulty disk
 - Failing disk
 - Bad power supply unit
 - Server kernel panic or crash
 - Simply needs hard power cycle)
- Scalability issues
 - High load average on server
 - other processes/services on server
 - Overloaded, too many clients

Identifying bottlenecks

- Unix "top" command
 - Quickly determine if problem is CPU or I/O

```
top - 09:11:59 up 3 days, 22:06, 1 user, load average: 0.80, 0.45, 0.51

Fasks: 177 total, 1 running, 175 sleeping, 0 stopped, 1 zombie

Tpu0 : 1.0%us, 1.3%sy, 0.0%ni, 97.3%id, 0.0%wa, 0.0%hi, 0.3%si, 0.0%st

Tpu1 : 0.7%us, 1.3%sy, 0.0%ni, 97.7%id, 0.0%wa, 0.0%hi, 0.3%si, 0.0%st

Tpu2 : 0.6%us, 0.6%sy, 0.0%ni, 98.4%id, 0.0%wa, 0.0%hi, 0.3%si, 0.0%st

Tpu3 : 0.7%us, 0.7%sy, 0.0%ni, 98.4%id, 0.0%wa, 0.0%hi, 0.3%si, 0.0%st

Tpu4 : 0.3%us, 1.0%sy, 0.0%ni, 98.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu5 : 1.0%us, 0.7%sy, 0.0%ni, 98.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu6 : 0.3%us, 0.6%sy, 0.0%ni, 98.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu7 : 0.0%us, 0.6%sy, 0.0%ni, 71.2%id, 27.9%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu7 : 0.0%us, 0.0%sy, 0.0%ni, 100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu7 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu7 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu7 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu7 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu7 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu7 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu7 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Tpu7 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
```

PID USER	PR	ΝI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
3527 root	20	0	204m	2136	1156	S	3.3	0.0	196:37.32	rsyslogd
3256 named	20	0	266m	5928	1772	S	2.7	0.0	169:54.61	named
3776 ganglia	20	0	477m	158m	2216	S	2.3	0.4	215:36.90	gmond

Identifying top talkers

- Unix "iotop" command
 - Which user or processes are generating IO traffic

Total DISK READ:	0.00 B/s	Total DISK	WRITE:	0.00 B/s
TID PRIO USER	DISK READ	DISK WRITE	SWAPIN	IO> COMMAND
1 be/4 root	0.00 B/s	0.00 B/s	0.00 %	0.00 % init
2 be/4 root	0.00 B/s	0.00 B/s	0.00 %	0.00 % [kthreadd]
3 be/4 root	0.00 B/s	0.00 B/s	0.00 %	0.00 % [ksoftirqd/0]
5 be/0 root	0.00 B/s	0.00 B/s	0.00 %	0.00 % [kworker/0:0H]

Identifying slow disks or network

- Unix "atop" command
 - Presents integrated view of CPU, RAM, network IO or individual disk IO
- Unix command "iptraf" presents view of network traffic for analysis

Output of "atop" command

ATOP	- argo					2013/10	/14 0	9:16:13					-						10s e	lapsed
PRC	sys	0.60s	user	0.39s			#pr	oc 173				#zombi	e 0		clones	15			#exit	17
CPU	sys	5%	user	3%	irq	1%			ĺ	idle	785%	wait	7%	ĺ			steal	0%	guest	0%
cpu	sys	0%	user	0%	irq	0%				idle	93%	cpu007	w 7%				steal	0%	guest	0%
cpu	sys	1%	user	0%	irq	0%				idle	99%	cpu002	w 0%				steal	0%	guest	0%
cpu	sys	1%	user	1%	irq	0%				idle	97%	cpu000					steal	0%	guest	0%
cpu	sys	0%	user	0%	irq	0%				idle	100%	cpu003					steal	0%	guest	0%
cpu	sys	1%	user	1%	irq	0%				idle	98%	cpu001					steal	0%	guest	0%
cpu	sys	1%	user	1%	irq	0%				idle	98%	cpu004					steal	0%	guest	0%
cpu	sys	1%	user	1%	irq	0%				idle	99%	cpu005					steal	0%	guest	0%
cpu	sys	0%	user	0%	irq	0%				idle	100%	cpu006					steal	0%	guest	0%
CPL	avg1	0.29	avg5	0.36	avg15	0.46						CSW	32541		intr	39447			numcpu	8
MEM	tot	39.4G	free	12.7G	cache	20.8G	dir	ty 159.5M		buff 5	31.1M	slab	2.9G							
SWP	tot	12.0G	free	12.0G													vmcom	2.9G		1.7G
DSK		sda	busy	10%	read	3	wri			KiB/r	5	KiB/w	8		MBr/s	0.00	MBw/s	0.60		5 ms
NET	transp		tcpi	52	tcpo	65	udp			udpo	2881	tcpao	6		tcppo	2	tcprs	0	udpip	0
NET	networ		ipi	7287	ipo	2959	ipf			deliv	7269	ļ .					icmpi	0	icmpo	16
NET	eth0	0%	pcki	5290	pcko	218	si	460 Kbps		so 12		erri	0	ļ	erro	0	drpi	0	drpo	0
NET	eth1	0%	pcki	23	pcko	842	si	1 Kbps			Kbps	erri	0	ļ	erro	0	drpi	0	drpo	0
NET	eth2	0%	pcki	22	pcko	20	si	1 Kbps			Kbps	erri	0	ļ	erro	0	drpi	0	drpo	0
NET	lo		pcki	1958	pcko	1958	si	153 Kbps		so 153	Kbps	erri	0		erro	0	drpi	0	drpo	0
L																				
PII			EUID	THR	SYSC		JSRCPU	VGROW		RGROW	RD		RDSK	S	ST EX	C S	CPUNR	CPU	CMD	1/2
3527			root	6	0.2		0.08s	0K		0K			124K	-	-	- S	5	3%	rsyslogd	
3256			named	11	0.1		0.10s	0K		0K		0K	0K	-	-	- S	0	3%	named	
3776	5 gang	lia	ganglia	2	0.1	2s	0.07s	0K		0 K		0K	0 K	-	-	- S	7	2%	gmond	

Benchmarking NFS performance

- Use the Unix application "iozone" to measure
 - Sequential read/writes, rewrites and rereads
 - Random read/writes, rewrites and rereads
 - Others
 - Backwards read, etc.
 - Direct output to native spreadsheet format for plotting

Iozone Performance Comparison EXT4/XFS/GFS

Image from https://rhsummit.files.wordpress.com/2013/06/shak-jeder-summit-perf-analysis-and-tuning-part-2-2013.pdf

lozone basic operation

- Basic syntax for NFS mount-point (/mnt/foo)
 - iozone –azcR -U /mnt/foo –f /mnt/foo/testfile –b exceloutput.xls > logfile

 Important Note: Understanding benchmarking data is better when comparing with prior baseline measurements.

Mitigating CPU effects in iozone

Options

- Processor affinity of all threads/processes ("-P # ")
- Limit on the least number of processes ("-I n")
- Processor cache purges ("-p")
- CPU cache size ("-S size ")
- CPU cache line size ("-L size ")
- Thread synchronization ("-x")

File-system access modes

Options

- Forcing synchronous file access or enforcing the O_SYNC option when creating/opening files ("-o")
- Files locking used for all IO requests ("-W")
- Memory mapped file access (either synchronous or asynchronous mode) used in the client ("-B")
- POSIX Asynchronous IO used in the client, which should not be confused with Asynchronous IO implemented on some Servers, such as Linux and HP-UX.)) ("-H n" or "-k n")
- Include fsync and fflush calls in the timings ("-e")

Concurrent access by many nodes

- iozone -t 2 -r 64 -s 1024 -+m filename
- Where the file "filename" lists the nodehostname, work-directory and iozone-binary:

Compute-0-0 /home/foo /usr/bin/iozone Compute-0-1 /home/foo /usr/bin/iozone

Use the -+d option to testing for data corruption

lozone example output

Image from http://www.iozone.org/docs/NFSClientPerf_revised.pdf

OPTIMIZING NFS

Visual inspection of NAS devices

- LED /Lights
 - On disks
 - Network ports (both computer & network device)
 - Power supply
- Damaged/broken cables
 - Broken heads, old cables
- High temperatures can also degrade the MTBF

Periodic on-line monitoring

- Monitoring
 - Use smartd for SMART monitoring of disks
 - periodic self testing of disks, predict disk faults and sends email notifications
 - Use Ganglia or NAGIOS
 - Monitor hardware, status and occupancy/capacity
- Periodic benchmarking (iozone)
 - File-system on both server and client side.
 - Can show trends

Server side configuration

- Exports
 - Restrict writes only to certain clients can improve performance
 - /etc/exports
 - None, read-only, read-write (with wildcards)
- Use NFS v3 when enhanced security checks are not needed
 - NFS v4 requires Keberos.
- When using quota control
 - Use server side tools to set and manage quota

Client side configuration

- Switching to on-demand mount can help performance
 - Automounter
 - auto.master
 - auto.home
- Additional performance tuning
 - mount options
 - rsize and wsize

Server performance tuning

- Vertical scaling (bigger single server)
 - More or faster RAM (and/or CPU)
 - More network connections
 - More NFS daemons
- Horizontal scaling (more physical servers)
 - Requires partitioning of data
 - Works best with automounter based client mounting
- Linux Kernel parameters (only if power is protected)
 - vm.dirty_background_ratio
 - vm.dirty_ratio

Summary

- Optimizing NFS storage solution for your HPC clusters is important for performance.
- Both preventive maintenance and periodic benchmarking can help to detect and cure NFS related performance problems.

Thank you