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[1] Precipitation downscaling improves the coarse resolu-
tion and poor representation of precipitation in global cli-
mate models and helps end users to assess the likely
hydrological impacts of climate change. This paper integrates
perspectives from meteorologists, climatologists, statisti-
cians, and hydrologists to identify generic end user (in partic-
ular, impact modeler) needs and to discuss downscaling
capabilities and gaps. End users need a reliable representation
of precipitation intensities and temporal and spatial variabil-
ity, as well as physical consistency, independent of region
and season. In addition to presenting dynamical downscal-

ing, we review perfect prognosis statistical downscaling,
model output statistics, and weather generators, focusing on
recent developments to improve the representation of space-
time variability. Furthermore, evaluation techniques to assess
downscaling skill are presented. Downscaling adds consider-
able value to projections from global climate models. Remaining
gaps are uncertainties arising from sparse data; representation
of extreme summer precipitation, subdaily precipitation, and
full precipitation fields on fine scales; capturing changes in
small-scale processes and their feedback on large scales; and
errors inherited from the driving global climate model.

Citation: Maraun, D., ¢t al. (2010), Precipitation downscaling under climate change: Recent developments to bridge the gap

between dynamical models and the end user, Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.




Topography in a global climate model
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Problems with GCM-simulated precipitation

IPCC AR4 ensemble mean — 2080-2099 relative to 1980-1999

Projected Patterns of Precipitation Changes

JJA

DJF multi-mod

CMAP observations (annual mean 1980-1999)

a)

30 90 150

240

Coarse resolution
Biases

internal variability vs.
true model differences?

large-scale circulation
vs. parametrisation errors?

representation of
temporal variability?

GCM precip can often not
be directly used

IPCC AR4 ensemble mean

300



Topography in a

regi

onal model (REMO)

(courtesy F. Feser)
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RCMs are biased

mean precipitation in ERA40-driven RCMs (from ENSEMBLES)

Mean annual precipitation (1961—-2000) [mm/day]

EOBS vs2 CHMI

2.13

Kotlarski, unpublished



RCMs are biased

precipitation bias in ERA40-driven RCMs (from ENSEMBLES)

Mean annual precipitation bias wrt EOBS (1961-2000) [%]

0.51 CHMI 0.51 CNRM 0.18
mean bias [mm/day] Y | Y

Kotlarski, unpublished



Statistical downscaling (Perfect Prog)
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Perfect Prog downscaling

Challenging predictor requirements

- informative: high predictive power on timescale of interest

- effective: non-redundant, smallest set

- physically motivated

- ‘perfectly’ simulated
in a climate change context this means predictors must be a plausible
realisation of future climate (no systematic model errors)

- candidates include circulation, temperature, humidity

Statistical relationships need to be stable over time

Bypasses complex synoptic- and mesoscale processes that may be
successfully simulated and tries to describe them with simple statistical models



Model Output Statistics (MOS), aka bias correction
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Downscaling classification (used in VALUE COST action)

1. Dynamical Downscaling (E. Coppola, S. Kotlarski)
1. Perfect Prog(nosis) (PP)

2.1 deterministic

2.2 probabilistic (PDFs but no time series)

2.3 stochastic, time series / weather generator (R. Chandler)

3. Model Output Statistics (MOS)
3.1 deterministic

3.2 probabilistic

3.3 stochastic, timeseries / weather generator




Perfect Prog downscaling - estimating precip from pressure

Coupled anomaly patterns (SVD) between DJF 1000 hPa geopotential
height (NCEP) and daily preciptation

geopot. height (Z1000)  precipitation topography
grids for: - ncep reanalysis - - observed precip.
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Model Output Statistics - estimating true precipitation
from simulated precipitation

simulated precipitation

(NCEP reanalysis)
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precipitation (3 y mean, DJF 1958-1998)
predictors: geopot. height (ZSVD)

or humidity (qSVD)
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Bias of RCM (MM5, ERA40 driven) over the Alps

Difference to observations (HISTALP) in mm/wetday

-8.00

[mm]

Mean: 0.0 Stand.Dev.:0.9 Max: 4.4 Min: -3.6 Mean: -0.1 Stand.Dev.: 0.7 Max: 3.3 Min: -3.7

(courtesy Matthias ThemeBl, Uni Graz)



(b)

Correction of RCM-simulated daily precipitation distribution

MMS5 driven by ERA40
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Model Output Statistics (aka bias correction)

Model Output Statistics (MOS) is standard in weather forecasting
and is preferred to Perfect Prog (PP). It is also used to correct RCMs

MOS in weather forecasting and in the reanalysis example are based on
(generalised) regression equations and thus require representation of
true circulation variability in model (known as ,pair-wise MOS®).

If only climatologies or standard simulations are available:
- only simple MOS models can be fitted (scaling and correction of PDFs)
and it is unclear to what extent these are biased by different circulation

(known as distribution-wise MOS);

- it is not clear whether temporal variability is reasonably simulated and
the MOS correction makes any sense.

Full MOS has not been possible yet with GCMs as only standard forced

simulations were available (random circulation variability). For RCMs
reanalysis-driven simulations provide the necessary set-up.




Contributions to error in simulated precipitation

For skill assessment and correction two types of error should be separated.
MOS is conceptually consistent with PP if only error 2 is corrected.

1. Simulated large-scale fields can
be different from true values

2. Parameterisations and topography
used to simulate precipitation may
Topography not be accurate

Parameterisations

Validation/CorreCtion o T
REAL WORLD

Observed precipitation

(Eden, Widmann, Grawe and Rast, 2012,
J. Climate)




What is the purpose of downscaling?

- provide regional climate consistent with large-scale GCM states?

- provide ‘best’ estimate for climate change, i.e. also correct for
large-scale GCM errors?

Can’t have both !

First case is consistent with many cases of Perfect Prog downscaling



Storm track density, climate change and bias

Mean CMIP5
response of
wintertime storm
track density to
RCP 8.5 in late
215t century

Mean CMIPS5 bias

Zappa et al.

(2013 J. Clim.)




Nudging of ECHAMS towards ERA40 reanalysis

Variables nudged towards ERA40
reanalysis (entire troposphere):

S D - circulation (div, vort.)

- temperature

Parameterisations

SST as in ERA40

Skill assessment and MOS based
on parametrisation errors

Validation = w5
REAL WORLD

Observed precipitation

(Eden et al. 2012)




RCM and GCM setup for pairwise Model Output Statistics

Reanalysis General Circulation Model (GCM)

R

. . L Circulation nudged
Circulation/temp : . e e
1

Regional Climate Model (RCM)

RCM-MOS

Pairwise GCM MOS has been applied already for monthly mean precipitation

(Eden and Widmann, J. Clim 2014)




Distributionwise vs pairwise Model Output Statistics

If only climatologies or standard simulations are available only
,distributionwise‘ MOS is possible:

- scaling, bias correction, correction of PDFs
- it is not clear whether temporal variability is reasonably simulated

and the MOS correction makes any sense.

If simulations are available in which the simulated and real weather
situations match (generalised) regression equations can be used.
We call this ,pairwise‘ MOS. Examples:

- RCMs driven by reanalysis (perfect boundary)

- GCMs nudged towards reanalysis




Correlation
ECHAM5S
precipitation and
GPCC observations

January 1958-2002

Jan Correlations precip norm regridded ECHAMS simulation and GPCC
90

Normal (non-nudged)

first quantification of
GCM skill in simulating
temporal precipitation
variability given correct
synoptic circulation

correction in low-skKill
regions makes no sense
(aka ‘the Mars problem’)

Nudged to ERA-40

(Eden, Widmann, Grawe, and Rast,
J. Climate 2012)




Correlations of ECHAMS5 with observed seasonal
precipitation means and scaling factors

correlations scaling factors
(a) DJF

.




MAM JJA

ECHAMS5 scaling factors
using GPCC obs (0.5 deg)

scaling factors shown only for
gridcells where interannual
variability is well-captured (i.e.
correlation coefficient > 0.7)

ECHAMS5:

- good agreement with
observations over large parts
of Europe

Annual
- too wet over Scandinavia

- too dry over parts of the
Mediterranean coast

- some differences between
nudged and non-nudged
simulation

(Eden et al. 2012)



Probabilistic MOS

for RCMs and GCMs



Deterministic downscaling

One predictor in --> one predictand out
Does not account for unexplained small-scale variability (local noise)

Local, deterministic MOS

- bias correction

- PDF matching

- can be applied to RCMs and GCMs

- can be used with reanalysis-driven RCMs or nudged GCMs for fitting,
or with standard GCM (and nested RCM) runs: different errors are
corrected

Non-local MOS (and PP) (tomorrow‘s lecture)
- predictors from a domain
- PC-MLR, 1D MCA ...




Probabilistic MOS for downscaling daily precipitation

- probabilistic: account for non-explained local variability
by predicting distributions

- use mixture of Gamma and Generalised Pareto distribution

- make distribution parameters dependent on simulated precipitation

~ PLEIADES

$)
GEOMAR

Projections and predictions of Local prEcipitation Intensities:
Advanced Downscaling using Extreme value Statistics

UNIVERSITYOF
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: o.. VolkswagenStiftung
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Stationary mixture model

(i.e. no downscaling)



Modelling daily precipitation distributions

distributions for bulk of precipitation values
- Gamma or log-normal distribution
- bad representation of extremes
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(M. Vrac, 2009)

extreme value distributions for the extremes
- Generalized Extreme Value Distribution for block maxima
- Generalized Pareto Distribution for peaks over threshold



Stationary mixture model

* From Frigressi et. al. (2002) — merge classical and EV
distributions
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Non-stationary mixture model
(MOS downscaling)



Probabilistic MOS (non-stationary mixture model)
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Figure 4: Daily precipitation time series (section) for Cambridge. Top: DJF; bottom: JJA.
Black: observed; grey: raw RCM, averaged across 3x3 grid boxes

(Wong, Maraun, Vrac, Widmann and Eden, J. Clim. 2014)




Probabilistic MOS (non-stationary mixture model)
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s o + 1T X_i is simulated precipitation on day i
Example for ‘vector generalised linear

;i 0 + 01 L model’ (VGLM)

. &0 model parameters are fitted using
Maximum Likelihood Estimation

Il Ty + T

T Iy

(Wong, Maraun, Vrac, Widmann and Eden, in revision)




Stochastic MOS:
VGLM mixture model

Daily precipitation
in Cambridge

predicted quantiles [mm/day]

Simulation:
CLM driven by ERA40

with nudging of
upper-level winds

Solid: VGLM mixture

Dashed: VGLM Gamma

predicted quantiles [mm/day]

(Wong et al-, J- Clim- 2014) D simulated precipitation [mmi/day]

— 25th — 50th — T5th S0th 95th — 99.9th percentile



Stochastic MOS: | DUF
VGLM mixture model
E 154
E
:
Daily precipitation :
in Cambridge Tl |

Al R i R 10 el .l”|"|'ll-

SimUIation: 1.12.|1961 | 1.12.I1963 | 1.12.1965 | 1.12.|1Eﬁ? | 1.12.|1969
CLM driven by ERA40 30
with nudging of N JJA
upper-level winds
E 20
E
5 15
£
E_ 10—
7 | | I i |
0 A1 AR A N AR A 1 L At L ol
(Wong et al., J. Clim. 2014) 161861 161963 16195 161967 161369

time

—  30th —  T5th = G0th Sath percentile



RCM'MOS Global Weather
vs GCM-MOS

Downscaling

PP Downscaling
Bias Correction

Local Weather Observation/Downscaled Variable

Does the RCM provide added value?

Bias Carrection

Aspects:
- fit between estimated distributions and past observations (this talk)

- spatial coherence

- magnitude of climate change signal

- pattern of climate change signal




Validation of RCM and GCM MOS: RE

] ] ] ?:‘MI
wet day occurrence from logistic regression oNIVERSITY
BIRMINGHAM
Reference:
stationary Gamma
|3
o \2
* Brier skill score quantifies the capability of BS = n Z'[fé - 0;)
our model to predict wet and dry days. i=1
e BSy O [0.0.1)
*  Wet day: precipitation > 1mm. BSS = | GVGELM O [0.1.0.2)
e Bs B [0.2.0.3)
ref H [0.3.0.4)
m D405
RACMO2 (DJF) C-CLM (DJF) | ECHAMS (DJF)
'ie;n g - %p gir‘:-f’f_ 'i‘:f1 £ 7
E ] *.il% - E i
<Gt ’ _,_, T Td
- rl"l] l|_| | - II:!"I]
2 A TR
-{w N S e L ' {w gl \
o \ oYL \ o, 3
j.f"' | A 't ) & H.f"' | A -
B ?--..J'- _u_f'l ] LH;H ; _H_t".l B ?-a'-‘- _U_;"I ;
cz“aJI g 4 . ,_.*a‘_-;_ ff’\; L4 . i-J'I r.:r\. : ..!.-" o
- R - - "~ - r S ] -
(Eden et al., & i

JGR 2014)



Validation of RCM and GCM MOS e
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UKCPO09

probabilistic climate change
projections:

precipitation

2080s, medium emissions scenario
Based on

- weather generator fitted to current climate

- modified by (additive) change factors for
mean and variance, derived from RCMs

- perturbed physics RCMs and GCMs from
Hadley Center/Met Office

- also 12 other GCMs

(UK Climate Projections: briefing report
http://ukcp09.defra.gov.uk )

Annual

Winter

Summer

10% probability level 50% probability level
Very unlikely to be Central estimate
less than

90% probability level
Very unlikely to be
greater than

1 1 1 1
-70 -50 -30 -10 0 10 30

Change in precipitation (%)

50 70




UKCPO09
probabilistic climate change
projections:
daily average
temperature

Very unlikely to be
less than

10% probability level

50% probability level
Central estimate

90% probability level
Very unlikely to be
greater than
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Figure 9: 10, 50 and 90% probability
levels of changes to the average daily
mean temperature (°C) of the winter
(upper) and summer (lower) by the
2080s, under the Medium emissions
scenario.

(UK Climate Projections: briefing report)



The science of VALUE: Validation

Aspects of the Multivariate Climate Distribution

Marginal Temporal Spatial Inter-Variable
Distribution Dependence Dependence Dependence

For each relevant variable

bulk, extremes, spells,
[ Phenomena ]annual cycle, eventsize,

How to quantify these phenomena? [ Indices
max. number consec.

' dry days,...

’ t h del bias, correlation,
oW 10 measure the mode [ Measures ] RMSE, skills scores,...

Which phenomena related to
these aspects are relevant?

mean, variance,
10-year return level,

performance to simulate the indices?




The science of VALUE: Validation

- Distributionwise

How is the climate distribution represented?

- Eventwise
How well are events represented?

Essential, even though we are not interested in forecasting.



The science of VALUE: Validation
Indices and performance measures

Marginal distribution

Index Distributionwise Eventwise
mean bias/mean percentage error (mpe)

variance mpe

skewness bias

full distribution distance measure

Temporal dependence / Extremes

Index Distributionwise Eventwise
time series mse
acflag 1,2,3 just indices

quantiles/return values quantile score (QS), bias QS
threshold exceedance Brier score
number of threshold exceedances bias

amount above threshold bias

shape parameter of GEV bias

quantiles of spell length distribution QS, bias

transition probabilities just indices

time of maximum/minimum of annual cycle bias

amplitude of annual cycle mpe

proportion of variance in low frequency band just indices

sign of the low pass filtered series Brier score




The science of VALUE:

Validation indices and performance measures

Spatial dependence

Index Distributionwise Eventwise
distribution of daily relative areas of threshold excesses gs/bias mse
EOFs ?

eigenvalues of EOFs ?

d.o.f.s ?

structure, amplitude, location SAL

range of variogram

madogram

One-point correlation maps

Inter-variable dependence

joint exceedances

Index Distributionwise Eventwise
correlation Just indices
variable conditional on (no) exceedance as marginals

as exceedances

|// ]I { ’ i VL" '



The science of VALUE: Validation in present climate

Predictands (observations) 1980-2010

gridded data without registration
gridded data with registration
sub-daily data

Different settings/data
» high quality gridded data for
large scale comparisons;

» ECA-D station data for specific
example catchments;

» hourly station data for selected
regions.

Variables

» temperature, precipitation,
wind, humidity, radiation.

Predictors (stat. DS) and boundary conditions (dyn. DS) :
ERA interim



The science of VALUE: Validation in future climate

Vs o
=5

RCM-simulated pseudoreality

- fit DS models using GCM-driven RCMs as predictands

- validate how well RCM-simulated climate for the second half of
the 21t century is estimated

Validation in
Future Climate




Summary and final comments

VALUE has provided a systematic classification of methods
(used also in NCPP controled vocabulary).

A systematic validation and method comparison is heeded. VALUE has defined
a systematic framework, which is currently being implemented on a web-portal.
The ranking of methods will most likely depend on which aspects are validated.

Errors introduced by the large-scale GCM forcing are a big problem and there
is no concensus whether and if so how to deal with the in downscaling




END



