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Principal Component Analysis (PCA)
or

Empirical Orthogonal Function (EOF)
analysis



Nomenclature

Principal Component Analysis is also known as EOF analysis. Some authors
use both names to distinguish whether the patterns have length 1 or length
of square root of eigenvalue, but this is not generally followed.

The EOFs are sometimes called ‘Principal component loadings’.

The PCs are sometimes called ‘Principal Component scores’.

What does Principal Component Analysis do?

Reduction of datasets: attempts to find a relatively small number of
variables that include as much as possible information of the original
dataset.

Objective analysis of the structure of a dataset with respect to
relationships between different variables.



‘ What Does EOF Analysis do? \

O In brief, EOF analysis uses a set of orthogonal functions
(EQOF5s) to represent a time series 1n the following way:

Z(x y.t=3 PC,(t)-EOF(x Y

O Z(x,y,t) 1s the original time series as a function of time (t)
and space (X, y).

EOF(x, y) show the spatial structures (X, y) of the major
factors that can account for the temporal variations of Z.

PC(t) 1s the principal component that tells you how the
amplitude of each EOF varies with time.

gl ESS210B
- Prof. Jin-Yi Yu




What Do You Get from EOF?
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An Example

L We apply EOF analysis to a
50-year long time series of
Pacific SST vanation from a
model simulation.

U The leading EOF mode shows
a ENSO SST pattern. The EOF
analysis tells us that ENSO 1s the
dominant process that produce
SST variations m this 50-year
long model simulation.

UThe principal component tells
us which year has a El Nino or La
Nina, and how strong they are.
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The Southern Hemisphere annular mode

Southern Annular Mode Index
(aka Antarctic Oscillation Index)
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The surface signature of the Southem Hemisphere annular mode.

January/February mean SAM (AAO) Index
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Principal Component Analysis, geometrical interpretation

EOF, l EOF,
) G

X

- EOFs show the direction of axes of a fitted ellipsoid

- EOF indices are ordered such that the variability of the data along
the corresponding axis decreases

- the EOFs are (unit) vectors, and thus can be expressed
by their projections onto the original axes (the EOF loadings)

- the PCs are the projections of the data onto the EOFs



How to find PCs and EOFs?

The fitting outlined on previous slide is equivalent to

- choose EOF1 such that PC1 has maximum variance

- choose EOF2 orthogonal to EOF1 and such that PC2 has maximum variance
with PCs defined as the projection of the data onto the EOFs.

For higher dimensions the variances of the higher PCs are also maximised
subject to the condition that the EOFs are mutually orthogonal.

This implies that an approximate expansion of the data using only n leading
PCs and EOFs is the best approximation to the data
(it maximises the variance and minimises the error).
It can be shown that the EOFs are the eigenvectors of the covariance matrix.

It follows that the PCs are mutually uncorrelated.

The calculations have the simplest from (see later) when the EOFs have
length one.



‘ Eigenvectors of a Symmetric Matrix \

1 Any symmetric matrix R can be decomposed in the following way
through a diagonalization, or eigenanalysis:

eigenvectors of symmetric matrices
are orthogonal

L Where E is the matrix with the eigenvectors e, as its columns, and L is

the matrix with the eigenvalues A, along its diagonal and zeros
elsewhere.

O The set of eigenvectors, e;, and associated eigenvalues, 4, represent a
coordinate transformation into a coordinate space where the matrix R
becomes diagonal.

Note: the eigenvalues are sometimes denoted A?, because .
this avoids using roots in some equations (o ESS210B
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Covariance matrix

The components are the covariances between the it" and the jth variable.

KQ1 G, - Cln\
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k=1

Example: If there are 200 SST grid cells and 30 years of monthly data
n=200and T =360



PCs as projections

If the k" EOF is given by a vector with length one

EOF, =

(eof,, )
eof,,

\eofnk )

|EOF) = " eof? = EOF] EOF, =1
i=1

we get the PC time series through the projection

PCk(tj): Z Xi(tj) eOfik
i=1

For brevity we have used here the assumption that x are anomalies;
this assumption will be used in all the following slides.



PCs as projections

If we arrange the data in a matrix containing n variables and T time steps

(X, X, - X,)
xo| % % '
\XTI XTn/

the PCs can be expressed through a matrix multiplication

PC.= XEOF, wih  PC(t)=PCy= ) x; edf,
=1



Typical eigenvalue spectrum

The eigenvalues are the square roots of the variances of the PCs

Eigenvalue Spectrum: Norm= no

The first EOF is well
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EOF modes

@
=
o
=
[
[L0)
=)
w

(from Hartmann 2003) &r B
Prof. Jin-Yi Yu




Maximum Covariance Analysis (MCA)
and

Singular Value Decomposition (SVD)



Nomenclature

The statistical method should be called Maximum Covariance Analysis,
and Singular Value Decomposition should be reserved for the algebraic
operation. However, many older papers use SVD as a name for the
statistical method.

What does Maximum Covariance Analysis do?
Objective analysis of the relationships between two sets of variables.
Finds patterns such that time expansion coefficients (which are given
by projection onto the patterns) have maximum covariance and the

patterns are orthogonal to each other.

These coupled patterns are often used to estimate one dataset from
the other.



Patterns and time expansion coefficients in MCA

For data sets X (n variables) and Y (m variables) the patterns are denoted by

Ui Vik

Uk Vak
u.=| . and Ve =

Unk mG

The time expansion coefficients (TECs) are given through projections
n m
ak(tj)zz Xi(tj) Uik bk(tj)zz yi(tj) Vik
i=1 i=1

The first pair of patterns u,, v, are chosen such that cov(a,,b,) is maximised
(with the constraint that the patterns have length 1, whichisuTu=1,viv=1)

The subsequent pairs of patterns are chosen such that they maximise the
covariance of the time expansion coefficients subject to the constraint that
they are orthogonal to the previous patterns. Note: TECs within the fields
are correlated, TECs between fields for different modes are uncorrelated.



Approximate expansions

The approximate expansions of X and Y using the leading patterns
and time expansion coefficients are given by

xl.(tj)zz a.(t;) uy y,-(i‘,-)zz b(1)) Vi
= k=1



Coupled patterns of sea surface temperature and mid-tropospheric
circulation used in the Met-Office statistical winter NAO forecast
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(http://www.met-office.gov.uk/research/seasonal/regional/nao/index.html)



NAO Index: Met-Office statistical prediction and observations
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Details of method: Rodwell and Folland, 2002: Quarterly J. Royal Met. Soc., 128, 1413-1443.

Link SST and NAO: Rodwell et al., Nature, 1999, 398, 320-323.



Perfect Prog downscaling - estimating precip from pressure

Coupled anomaly patterns (MCA) between DJF 1000 hPa geopotential
height (NCEP) and daily preciptation

geopot. height (Z1000)  precipitation topography
grids for: - ncep reanalysis - - observed precip.
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Model Output Statistics - estimating true precipitation
from simulated precipitation

simulated precipitation

(NCEP reanalysis)
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Singular Value Decomposition

The singular value decomposition of a matrix A is a generalisation
of the eigenvalue problem to non-quadratic matrices and is given by
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Cross-covariance matrix and MCA

The components are the covariances between the it" variable in the
dataset X and the jt" variable in the dataset Y.

(G, G,  Gp)
c, C, : Note this is in general
C, = : . : a non-quadratic matrix
\Cnl Cnm)
with
1 T
Cij = = 4 Z (Xi(tk)_)—(i)(yj(tk)_yj)

-1 <

It can be shown that the MCA patterns are the left and right singular vectors
of a SVD of the cross-covariance matrix.



Canonical Correlation Analysis (CCA)



What does Canonical Correlation Analysis do?

Same purpose as MCA: objective analysis of the structure of the
relationships between two sets of variables.

But the selection criterion is different:

Finds projection vectors such that time expansion coefficients are
uncorrelated within one dataset and have maximum correlation with
the time expansion coefficient of the same index (mode) in the other
dataset. TECs between the two fields for different indices are
uncorrelated.

The patterns are obtained by minimising the error in an approximate
expansion and are not orthogonal and not identical to the projection
vectors.

The coupled patterns are often used to estimate one dataset from the
other.



Distinction between projection vectors and patterns

Because the projection vectors used for calculating the time expansion
coefficients from the data and the patterns used in the expansion are not
identical (in contrast to PCA and MCA), we need to distinguish between them.
We use u, v for the projection vectors, and p, q for the patterns. Note that the
projection vectors are called weights in some papers, because they are the
weights used to calculate the time expansion coefficients from the data.
They are also sometimes called adjoint patterns.

dataset X dataset Y
data expansions L m
using patterns ()= al) p Yt~ b(t) g
k> Mk k=1 k=1

time expansion coeffs. n m

using projection a(t)=> x(t)u,  bB{)=D y(t) v,
(or weight) vectors i=1 i=1

Uy, Vi



Solution to the CCA problem

It can be shown that the projection vectors for the X dataset are given
by the following eigenvector problem

C.C,C,C, u. =AU,

XX Xy WY

The projection vectors for Y are then given by

v,=bC,C, u,

and the patterns by CCA usually needs PCA prefiltering
otherwise the inversion of the
Py = CXX u, matrices becomes unstable:

Too many predictors lead to overfitting.

qk — ny Vk
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FIG. 5. The patterns of the first canonical pair of SLP (mb; countour
interval 1 mb) and SST (K: contour interval 0.1 K) in the North
Atlantic area. The correlation between the corresponding time com-
ponents is 0.56. They explain 21% and 19% of the total variance. In
each figure, hatched areas correspond to maxima or minima in the
other figure. Continuous lines mark positive values, and dashed lines
negative values. The zero line is in bold.

Example for CCA patterns between SLP and SST
(Zorita et al. J. Climate 1992)

90w
BO'N — — 80N
30N — — 30N
0 - o
90'W
o0
60N — — 60N
30°N — 30°N

FIG. 6. The patterns of the second canonical pair of SLP (mb;
contour interval 1 mb) and SST (K; contour interval 0.1 K) in the
North Atlantic area. The correlation between the corresponding time
components 15 0.47. They explain 31% and 15% of the total variance,
In each figure, hatched areas correspond to maxima or minima in
the other figure. Continuous lines mark positive values, and dashed
lines negative values. The zero line is in bold.



Example for CCA patterns between SST and precipitation
(Zorita et al. J. Climate 1992)
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F1G. 12. The patterns of the first canonical pair of 88T { K; contour
interval 0.1 K) in the North Atlantic and of winter { DJF) Iberian
rainfall (mm; contour interval 50 mm). The correlation between the
corresponding time components is 0.70. They explain 13% and 65%
of the total variance. Continuous lines mark positive values, and
dashed lines negative values, The zero line is in bold.



First CCA patterns between SLP and temperature or

precipitation from CRU data
(courtesy Roxana Bojariu and Lilana Vilea)

Air surface temperature ("C) and SLP (hPa) Precipitation (mm/day) and SLP (hPa)
anomalies anomalies
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Estimating one dataset from the other



Estimation of one dataset from the other one

The approximate expansion of Y using the leading patterns and time expansion
coefficients is given by

yi(tj) ~ Z bk(tj) Qi
k=1

If we want to estimate Y from X, we use estimates for the TECs that are obtained
through multiple linear regression from the TECs of X

Jt)=> b(t) G
k=1

If the entire set of coupled patterns are used, the estimates obtained from
MCA and from CCA are identical to the estimates based on
Multiple Linear Regression.

If only a few leading modes are used the MCA, CCA, and MLR estimates are
usually different (Tippet et al., J. Climate 2008).



