
Methods for finding coupled 
patterns in two data sets 
  

            Martin Widmann  

                                                                       
               
 

 

 

                                                        

 

 

VALUE training school, ICTP Trieste, 4. November 2014 



 
- patterns and time expansion coefficients   
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  Singular Value Decomposition (SVD) 
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Principal Component Analysis (PCA) 
 
or  
 
Empirical Orthogonal Function (EOF)  
analysis   



Nomenclature   
Principal Component Analysis is also known as EOF analysis. Some authors 
use both names to distinguish whether the patterns have length 1 or length  
of square root of eigenvalue, but this is not generally followed. 
 

 
 

 

What does Principal Component Analysis do?   

Reduction of datasets: attempts to find a relatively small number of 
variables that include as much as possible information of the original 
dataset. 
 
Objective analysis of the structure of a dataset with respect to 
relationships between different variables. 
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Southern Annular Mode Index  
  (aka Antarctic Oscillation Index) 

(from Jones and Widmann, Nature, 2004) 

January/February mean SAM (AAO) Index 
 
Reconstructions from two different sets of long 
pressure measurements 



Principal Component Analysis, geometrical interpretation 

- EOFs  show the direction of axes of a fitted ellipsoid 
 
- EOF indices are ordered such that the variability of the data along  
   the corresponding axis decreases 
 
- the EOFs are (unit) vectors, and thus can be expressed   
  by their projections onto the original axes (the EOF loadings) 
 
- the PCs are the projections of the data onto the EOFs  
 

X1 

X2 

EOF1 
EOF2 



How to find PCs and EOFs? 

The fitting outlined on previous slide is equivalent to  
 
- choose EOF1 such that PC1 has maximum variance 
 
- choose EOF2 orthogonal to EOF1 and such that PC2 has maximum variance 
 

with PCs defined as the projection of the data onto the EOFs. 
 

For higher dimensions the variances of the higher PCs are also maximised  
subject to the condition that the EOFs are mutually orthogonal.  
 

This implies that an approximate expansion of the data using only n leading 
PCs and EOFs is the best approximation to the data  
(it maximises the variance and minimises the error). 
 

It can be shown that the EOFs are the eigenvectors of the covariance matrix. 
 
It follows that the PCs are mutually uncorrelated. 
 
The calculations have the simplest from (see later) when the EOFs have  
length one.  



Note: the eigenvalues are sometimes denoted 2, because 
this avoids using roots in some equations 
(e.g. Hannachi et al. 2007). 

eigenvectors of symmetric matrices 
are orthogonal 
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Covariance matrix 

The components are the covariances between the ith and the jth variable. 
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Example: If there are 200 SST grid cells and 30 years of monthly data 
n = 200 and T = 360  



PCs as projections 
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we get the PC time series through the projection 
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If the kth EOF is given by a vector with length one   

12

1

2
k

T
kik

n

i
k EOFEOFeofEOF

For brevity we have used here the assumption that x are anomalies;  
this assumption will be used in all the following slides. 



PCs as projections 

If we arrange the data in a matrix containing n variables and T time steps 
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the PCs can be expressed through a matrix multiplication 

with  



Typical eigenvalue spectrum 

The eigenvalues are the square roots of the variances of the PCs 



Maximum Covariance Analysis (MCA) 
 
and 
 
Singular Value Decomposition (SVD) 
 



What does Maximum Covariance Analysis do?   

Objective analysis of the relationships between two sets of variables. 
 
Finds patterns such that time expansion coefficients (which are given 
by projection onto the patterns) have maximum covariance and the 
patterns are orthogonal to each other. 
 
These coupled patterns are often used to estimate one dataset from 
the other. 

Nomenclature 

The statistical method should be called Maximum Covariance Analysis, 
and Singular Value Decomposition should be reserved for the algebraic  
operation. However, many older papers use SVD as a name for the  
statistical method. 



Patterns and time expansion coefficients in MCA 
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The time expansion coefficients (TECs) are given through projections 
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For data sets X (n variables) and Y (m variables) the patterns are denoted by   

ik

m

i
jijk vtytb

1
)()(

and 

The first pair of patterns u1, v1 are chosen such that cov(a1,b1) is maximised 
(with the constraint that the patterns have length 1, which is uT u = 1, vT v = 1) . 
 
The subsequent pairs of patterns are chosen such that they maximise the  
covariance of the time expansion coefficients subject to the constraint that 
they are orthogonal to the previous patterns. Note: TECs within the fields  
are correlated, TECs between fields for different modes are uncorrelated. 



Approximate expansions 

The approximate expansions of X and Y using the leading patterns  
and time expansion coefficients are given by  
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(http://www.met-office.gov.uk/research/seasonal/regional/nao/index.html) 

Coupled patterns of sea surface temperature and mid-tropospheric 
circulation used in the Met-Office statistical winter NAO forecast 

coupled 
patterns 
 
(MCA) 
 
 
 

sea surface 
temperature 
anomalies in 
May 2006 and  
May 2007 



(http://www.met-office.gov.uk/research/seasonal/regional/nao/index.html) 

NAO Index:  Met-Office statistical prediction and observations 

Skill 
 
Correlation = 0.45 
 
Correct sign 66% 

Details of method: Rodwell and Folland, 2002: Quarterly J. Royal Met. Soc., 128, 1413-1443.  
 
Link SST and NAO: Rodwell et al., Nature, 1999, 398, 320-323.  



Perfect Prog downscaling - estimating precip from pressure 

(Widmann and Bretherton, J. Climate 2000; Widmann et al., J. Climate, 2003) 

pair 1 

pair 2 

geopot. height (Z1000)      precipitation  topography 

Coupled anomaly patterns (MCA) between DJF 1000 hPa geopotential  
height (NCEP) and daily preciptation 



Model Output Statistics - estimating true precipitation 
from simulated precipitation       

simulated precipitation  
(NCEP reanalysis) observations 

Coupled anomaly patterns  
(MCA) between DJF daily  
simulated  (NCEP)  and  
observed preciptation 

topography 



Singular Value Decomposition 
The singular value decomposition of a matrix A is a generalisation 
of the eigenvalue problem to non-quadratic matrices and is given by   
 
 A = U S VT       with U and V orthogonal matrices.        If n < m this is in components  
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(columns of matrix) singular values 

right singular vectors 
(rows of matrix) 

(analogously for  n > m, with zeros attached as rows) 



Cross-covariance matrix and MCA 

The components are the covariances between the ith variable in the 
dataset X and the jth variable in the dataset Y. 
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Note this is in general  
a non-quadratic matrix 

It can be shown that the MCA patterns are the left and right singular vectors  
of a SVD of the cross-covariance matrix. 



Canonical Correlation Analysis (CCA)  



What does Canonical Correlation Analysis do?   

Same purpose as MCA: objective analysis of the structure of the 
relationships between two sets of variables. 
 
But the selection criterion is different: 
 
Finds projection vectors such that time expansion coefficients are 
uncorrelated within one dataset and have maximum correlation with 
the time expansion coefficient of the same index (mode) in the other  
dataset. TECs between the two fields for different indices are 
uncorrelated. 
 
The patterns are obtained by minimising the error in an approximate 
expansion and are not orthogonal and not identical to the projection 
vectors. 
 
The coupled patterns are often used to estimate one dataset from the 
other. 
 



Distinction between projection vectors and patterns 

Because the projection vectors used for calculating the time expansion  
coefficients from the data and the patterns used in the expansion are not 
identical (in contrast to PCA and MCA), we need to distinguish between them. 
We use u, v for the projection vectors, and p, q for the patterns. Note that the 
projection vectors are called weights in some papers, because they are the 
weights used to calculate the time expansion coefficients from the data.  
They are also sometimes called adjoint patterns. 
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dataset X dataset Y 

data expansions 
using patterns  
pk, qk 
 
 
 
time expansion coeffs. 
using projection  
(or weight) vectors 
uk, vk 



Solution to the CCA problem   

It can be shown that the projection vectors for the X dataset are given 
by the following eigenvector problem 
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The projection vectors for Y are then given by 

and the patterns by 
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CCA usually needs PCA prefiltering 
otherwise the inversion of the  
matrices becomes unstable: 
Too many predictors lead to overfitting. 



Example for CCA patterns between SLP and SST 
(Zorita et al. J. Climate 1992) 



Example for CCA patterns between SST and precipitation 
(Zorita et al. J. Climate 1992) 



Air surface temperature ( C) and SLP (hPa) 
anomalies 

Precipitation (mm/day) and SLP (hPa) 
anomalies 

First CCA patterns between SLP and temperature or 
precipitation from CRU data 
(courtesy Roxana Bojariu and Lilana Vilea) 



Estimating one dataset from the other  



Estimation of one dataset from the other one 

The approximate expansion of Y using the leading patterns and time expansion  
coefficients is given by  
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If we want to estimate Y from X, we use estimates for the TECs that are obtained 
through multiple linear regression from the TECs of X   
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If the entire set of coupled patterns are used, the estimates obtained from  
MCA and from CCA are identical to the estimates based on  
Multiple Linear Regression. 
 
If only a few leading modes are used the MCA, CCA, and MLR estimates are 
usually different (Tippet et al., J. Climate 2008). 


