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Cloud-resolving Regional Climate Processes,
Modeling Modeling and Scenarios

Main modelling tools:
ECHAM / MPI-ESM (global)
COSMO-CLM (regional)

Climate model evaluation as an important component
of model development and application.
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GCM OROGRAPHY HadGEM2-ES, 1.875° x 1.25°, approx. 140 km
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GCM OROGRAPHY HadGEM2-ES, 1.875° x 1.25°, approx. 140 km

: I & ace
. - ® Does not consider small-scale variability of surface £
i forcmgs (topography, land-sea contrast, land use) '

w ® Does not resolve mesoscale dynamics

® Does not target regional and local scales
considered in many impact assessments
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ON GLOBAL CLIMATE MODEL

THE ICON MODEL
1 triangular grid with
Regional .
Modelling local refinement

2

ooNOGC-UN h W

Source: MPI-M Hamburg / ICON
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GCM OROGRAPHY HadGEM2-ES, 1.875° x 1.25°, approx. 140 km

1

ace
. 59 ® Does not consider small-scale variability of surface

j' forcings (topography, land-sea contrast, land use)

® Does not resolve mesoscale dynamics

® Does not target regional and local scales
considered in many impact assessments

Explicit climate downscaling to translate large-
scale conditions into local weather

a) Empirical-statistical approaches
b) Dynamical downscaling
c) Combination of both

dy d

Surface Altitude (m
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EMPIRICAL-STATISTICAL DOWNSCALING (classical view)

1 Z
Modeling Large scale
7 (flow) conditions
3 \
4 | "
5 ~—/ Regional / local
N scale conditions
6 1) Empirically s
derive a transfer (o) Spondlng to
7 function rge Scale
Z) Extrapolate
ransfer function
8 t fer funct

into future
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REGIONAI. CI.IMATE MODEI.I.ING

1 Apply a limited area model (regional climate model, RCM) as a
Reglon boundary relaxation ‘magnifying glass-..

Modelling

SO b\ RCM domain

SO e
A R
NN N\
T N N N N

interior
domain

Origin in numerical weather prediction
Horizontal resolution: 10 - 50 km

Internal RCM timestep: a few minutes
RCM output interval: hourly, daily, monthly
Typically one-way nesting only

* Re-analysis
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E-ANALYSES: BASICS

Systematic approach to

Idea: Continuously assimilate observations (surface, radio
sondings, remote sensing) into a

-> reprocessing
observational data spanning an extended historical period
using a consistent modern analysis system

Apply
(«frozenn)

Most reanalyses are , but products at higher
resolutions exist as well

Besides atmospheric reanalyses further types exist (e.qg.,
oceanic reanalyses)



ETH-rich

1

Regional
Modelling

RE-ANALYSES: PURPOSE

of operational weather forecasts
over historical periods

Provision of for atmospheric
limited area models (e.g., RCMs)

Of glObal and regiOnal e Reanalysis grid
- - eEE—— . CM grid
climate model experiments - Y

--------------

Provision of atmospheric
boundary conditions for,
e.g., hydrological models SO

. el
.....

e
--------

.
. .
.....
---------------

e.g., ERA40, ERA-Interim, 0 :'.'.'..‘-.'-_':"._';':“:';"

ERA-20C, JRA-55, MERRA, . GEE . A
NCEP/NCAR
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But: Re-analysis uncertainty! T4 AN 3. Fernandez,

Univ. Santander
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MODEL C

1

Regional
Modelling

» Address the resolved part of atmosphe-
ric dynamics and thermodynamics.

« Solution of the governing equations of
fluid motion on a computational grid

« Examples of resolved structures: general
circulation of atmosphere, low and
high pressure systems, mountain
flows

Representation of unresolved scales by
parameterizations (sub-grid)

Typically contain empirical components
and are to some extent tuned/calibrated

Major source of model uncertainty

Examples of parameterized processes:
boundary layer, convection,
precipitation, clouds, land surface

Courtesy: C. Schdr, ETH Zurich
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PROS & CONS
1 Physically consistent response, including climate
Modaling | feedbacks
- |
N Application of models for future periods possible

(in principle)

Computationally expensive
Advanced expertise required
Limited number of realizations
] Limited spatial resolution (does not target the site scale)

Strongly depends on driving GCM (garbage in - garbage
out)

“Added value” wrt. GCM not always apparent
(found, e.qg., in high-order statistics reflecting intense and
localized events)
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THE ADDED VALUE
1 ®* An RCM won't improve all aspects of a GCM simulation
Vesmg  ® Added value often hard to find for time-averaged quantities or on large spatial

scales

® Most likely in frequency distributions and high-order statistics reflecting intense
and localized events (e.g. tails of daily precipitation intensity distribution; e.g.
Jacob et al. 2013)

® Added value on scales that are common to both the RCM and the driving GCM?

Reference simulation 1971-2000

.5

Frequencies of daily precipitation intensities over < GCM
central Europe (ensembles of five simulations each) 0 RCM
<« | Ik
=
= 9
Q o
=
<]
= —
o
O o
L o u
-
S -
o || | | 1 || 1 ) || | | | || | | )
4.5 10.5 16.5 22.« 28.5 34.5 40.5 46.5 —

Precipitation [mm/day] Jacob et al. 2013
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TYPES OF RCM EXPERIMENTS

I boundary forcing
Regional (global)
Modelling EVALUATION RUN

Re-analysis
(perfect boundaries)

Evaluation of

~“  downscaling

CLIMATE SCENARIO

GCM Evaluation of
historical GHG — < GCM-RCM chain
GCM - Climate

future GHG

-/ change

SENSITIVITY RUN
Sensitivities,
process

Re-analysis/

GCM

Idealized setups

understanding
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THE UNCERTAINTY CASCADE

1

) Statistical-empirical methods
Regional

Modelling /\

Greenhouse gas and GCM RCM Interface to impact model Impact model
aerosol scenario (choice and setup) (choice and setup) (further downscaling and postprocessing)

\ !
' "’Offjp‘/“;‘-
- E‘f - u'dfjé;)ss:-,
fJI“;) ) f.fjaj fCJ.r'ra] o7
<« . N, ~ e

- Varjakh:
Ensem b I € approaches j“w!/]ji

to quantify and constrain uncertainties
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Regional
Modelling

EMISSION SCENARIO ENSEMBLES

o Carry out multiple projections assuming different emission scenarios

MULTI MODEL ENSEMBLES

« Combine multiple projections from different models
» |deally: models independent of each other (typically not given!)

* Intermodel variability as a measure of uncertainty (spread of
projections)

PERTURBED PHYSICS ENSEMBLES

« Combine different simulations of the same model but with perturbed
versions of the original model physics

 More systematic sampling possible (multi model ensembles:
opportunistic ensembles)

* Intramodel variability as a measure of uncertainty
e e.g. climateprediction.net
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Regional
Modelling

2
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THE ENSEMBLES PROJECT

® EU FP6 research programme
2004-2009

http.//ensembles-eu.metoffice.com

¢ Setup of an ensemble prediction
system for climate change in
Europe

® Regional component:
Application of 17 RCMs at 25 and
50 km resolution

°* ERA40-driven evaluation runs

° Regional climate scenarios
(multi GCM-multi RCM)

®* Rather few scenarios (15 until 2100)
® Only SRES A1B considered
® Horizontal resolution too coarse for many applications

2400
2200
2000
1300
1500
1500
1400
1300
1200
1100
1000
S00
500
700
500
500
400
300
Z200
100



e = —
INSTITUTE FOR ATMOSPHERIC AND (‘:.J._.lMATE"SQE&CE S— =

ETHZz(rich e _ =
CORDEX

Coordinated Regional Climate
Downsscaling Experiment

Regional . )
Modeling International framework for next generation of

regional climate change projections for all
terrestrial
regions of the globe (http;/wcrp-cordex.ipsljussieu.fr)

z . p h //WCI' “orde)(.i sl jussieu.fr
The CORDEX community has grown to now include 14 domains; Hpy/werp-cordexipsiy

Includes dynamical and statistical downscaling approaches

Forcing: CMIP5 GCMs assuming Representative Concentration Pathways
(RCPs)

Common RCM resolution: 50 km, focus domain: Africa
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European branch of CORDEX
l http.,,/www.euro-cordex.net

Regional

Modeling ¢ Community currently consists of
29 modelling centers applying

10 different RCMs

Experiments at 50 km and 12 km

for European domain

Evaluation runs

forcing:
ERA-Interim (1989-2008)

A

Climate scenarios

forcing: CMIP5 GCMs (1951-2100)

50km: 66 simulations (10 RCMs, 12 GCMs, 3 RCPs)
12 km: 42 simulation (9 RCMs, 7 GCMs, 3 RCPs)

About 1/3 of experiments currently available on ESGF archive
(e.g. http://esgf-data.dkrz.de)
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¢ Updated GCMs/ESMs

¢ Updated RCMs

® RCPs

® Higher grid resolution (for 12 km)
® Much larger ensembles

®* High resolution versus ensemble size
® 150 years on 12 km: 2.5 mio CPUh
® 150 years on 50 km: 1/33 of it

® Uncertainties (still) not fully sampled
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WHY SHOULD WE VALIDATE AN RCM?
(or a climate model in general)
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WHY RCM EVALUATION?

Note: Also applies to GCMs and many other kinds of models!

2 DOES THE MODEL WORK FOR THE PURPOSE IT
sweran HAS BEEN BUILT FOR?

® RCMs as (INCOMPLETE!) mathematical representations of the
regional climate system

® Based on physical principles, but subject to

® Check:

° (that
potentially have major implications)

® But: Any performance threshold is subjective; only broad
picture can be provided



INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENG —

ETH-rich

-

i

WHY RCM

e

EVALUATION? (conta)

MODEL SELECTION AND WEIGHTING

2 ® Basis for individual models in multi-model ensembles

Rationale

¢ But: Weighting usually based on subjective performance scores
and potentially dangerous (Weigel et al., 2010)

® If several models are available but only one (or a few) can be
afforded to run: Evaluation can inform to some extent

® Basis for models with major deficiencies

MODEL SETUP AND CALIBRATION

® Chosing a specific setup of an RCM for a given application
(domain, timestep, parameterization options, ...)

® Parameter calibration within a specific setup («model tuning»)
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WHY RC

ADDED VALUE ANALYSIS

2 ® RCM application costly (both manpower and computing time)

Rationale

® Especially true for high spatial resolution:
for 12 km vs. 50 km

® Model evaluation to inform decision whether this investment is
reasonable or not

® But: Evaluation does not tell the entire story (added value
might only appear in the scenarios)

IDENTIFICATION OF MODEL DEFICIENCIES

® Evaluation can highlight deficiencies of a particular model

® But: Does not necessarily highlight the physical reasons for
biases



WHY RCM EVAI.UATION? (cont'd)

MODEL DEVELOPMENT

2 ® Evaluation of newly introduced model components

Rationale

® Usual procedure: (1) stand-alone / idealized mode
(2) fully interactive mode

® Might require re-calibration!
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RCM VERSUS SD EVAI.UATION

Compared to SD evaluation,
2 RCM evaluation ...

Rationale

.. Should not be carried out a the point scale but
at the RCM grid cell scale or coarser |

)

.. Should always be carried out for a larger area
(multiple grid cells or entire model domain;

)

.. can typically not be carried out event-wise

.. Should - if possible — target
in order to be informative
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Approa-
ches

—

OF RCM EXPERIMENTS
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e

«Run your model for some period in the past and check the performance.»

boundary forcing
(global)

Re-analysis
(perfect boundaries)

GCM
historical GHG

GCM
future GHG

Re-analysis/

GCM

Idealized setups

(Not as trivial as it seemsl)

= VALUATION RUN

Evaluation of
downscaling

CLIMATE SCENARIO

Evaluation of
GCM-RCM chain

Climate
change

SENSITIVITY RUN

Sensitivities,

process
understanding
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EVALUATION RUN

(Re-analysis driven)

3 /

Approa-
ches

® Assumption of «perfect
boundaries»

® Separation of downscaling
performance from biases due
to erroneous large-scale
forcing

® Temporal correspondence on
large temporal and spatial
scales

TYPES OF EVALUATION

= —

SCENARIO RUN
(GCM-driven historical)

~

® Fvaluation of combined
GCM-RCM chain

® RCM results strongly
influenced by errors in the

boundary forcing («garbage

in — garbage out»)

®* No temporal corresponden-

ce! (especially if driven by
AOGCM)

REFERENCE

SENSITIVITY RUN

® Scope of evaluation
strongly depends on
specific setup

® Typically physical-based
evaluation

® Reference: often another
simulation of the same
model
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THE REFERENCE

. A different model that you trust in
(could be, for instance, a or a model based on

)

A reconstruction of the historical
climate (especially applies to paleoclimate studies)

A reference simulation of the same
model
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Approa-
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SCALE MISMATCH

RCMs operate on grid cell scale

Output typically needs to be interpreted as
«mean over grid cell area»

Scale mismatch when comparing gridded model
results to measurements at individual stations

Smoothing of spatial variability

Smoothing of (localized) extremes, especially
precipitation and winds

Elevation and slope effects in topographic terrain

Neglect of subgrid variability (as, for instance,
introduced by land surface characteristics)
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2 Stations vs. grids

3

Approa- b)
ches

4

0O N OGN

Annual Extreme Precipitation of Station Data

GHCN stations

10

e ‘_--- - =
ESGIENGE = e
_~" g

SCALE MISMATCH (contd)

d)

20

= g

_._‘,; .'/T'_-.-..

97th percentile of wet-day precipitation (1979-2003):

Annual Extreme Precipitation of HRES Data h) Annual Extreme Precipitation of LRES Data

Gridded to 0.25°

(Cressman interp.)

30

— \

SR e
A1 TTTrT—e—T ¥
sl | ) s

35
W \
,‘/ \\
L/ \
?SWQ )\
i T 15 ( %) 2 e //)600@1
D AV =L

105°w 90°W

Remapped to 0.9° x 1.25°

(Conservative remapping)

. R

50 60 70 80

Gervais et al., 2014
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GRIDDED
— Use of g r iddEd reference data

-

REFERENCE DATA

interpolated onto
3 a reqgular grid

Approa- Measurements and interpolation subject to considerable
h - -
e uncertainties! (see later)

products

Observations only indirectly represented (data assimilation)

Uncertainties due to assimilation scheme, re-analysis model
and changing mix of underlying observational data

For instance: introduction of satellite data in 1970s

products
Also involve models and assumptions (e.g. radiative transfer)

Good spatial, but typically limited temporal coverage
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EXCEPT ION. SINGI.E-COI.UMN MODES

For development / refinement of parameterizations an RCM (or parts of it) is often

operated in a special (just one single soil/
atmospheric column is considered, no horizontal dependencies)

3 ¥

Approa-

e “ Single-station reference data often useful!
(soil temperatures, snow cover, surface
fluxes, air temperatures at different heights, ...)

Especially applies to land-surface
parameterization schemes

«Controlled» boundary conditions

Idealized prescribed (observed) forcing of
column

Physiographic parameters close to those
observed
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GRIDDED REFERENCE DATA
) Use of g r iddEd reference data

interpolated onto
3 a reqgular grid

Approa- Measurements and interpolation subject to considerable
h - -
e uncertainties! (see later)

products

Observations only indirectly represented (data assimilation)

Uncertainties due to assimilation scheme, re-analysis model
and changing mix of underlying observational data

For instance: introduction of satellite data in 1970s

products
Also involve models and assumptions (e.g. radiative transfer)

Good spatial, but typically limited temporal coverage

Regridding still necessary in most cases!
(matching RCM and reference data resolution)
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http://www.ecad.eu/download/ensembles/ensembles.php

Daily gridded ,
, for Europe

Developed within the EU ENSEMBLES project
3 1950-2013 (v10)

Approa-
e Four different resolutions:
- 0.25° reqgular
- 0.5° regular
- 0.22° rotated | cnsemiBLEs

- 0.44° rotated |RCMgrid

Underlying station time series available for most parts
Standard reference for RCM evaluation over Europe

Shortcomings: Low station density over many areas
(nominal resolution < effective
resolution; smoothing of extremes)

Even nominal resolution coarser
than recent high-resolution EURO-
CORDEX runs (O.l lo, Figure 1. The complete gridding region (land-only),

showing the station network for (a) precipitation and (b)

mean temperature.

Temporal inhomogeneities Haylock et al., 2008
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THE E-OBS GRIDDED DATASET (cont'd)

Mean annual precipitation (1961—-2000) [mm/day]
EOBS vs2 1.62

[mm/day]

0.16

5 an annual precipitation bias wrt EOBS (1961-2000) [%]

DMI

[%]
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PERFORMANCE METRICS

«Performance measures», «Skill scores», «Performance score», «Evaluation metrics»
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Measures

SIMULATION | /  Comparison | REFERENCE
¥
Performance
metric
Metrics should the model performance against a
for a : «Is the model able to

simulate things we have observed?»
Combined scores (accounting for several aspects / variables) possible

Usually not desgined to diaghose for model errors

Ideally, a metric should allow a
(«good performance» ... -> ... «<bad performance»): scalar quantity

Also: Assessment of of performance of
a given model

Also: Assessment of performance of different setups of a given model
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METRIC

4

Measures

— = },a-
o

SELECTION

«Metric Zoo»: Infinite number of potential metrics

No well-defined common set of benchmark * )
metrics; but several «<standard» metrics Il

One single metric AL\XWAYS neglects certain - +
aspects of model performance *

RCM: Metrics typically consider | —/
climatology or trend! - > Y

Metric1 Metric2 Metric 3 Subjective choice

@ Outcome of evaluation exercise typically
strongly depends on metric

Concept of one-best model is ill-defined! (but
there may be a best model for a given purpose)

CCCOC

.kLLL
L L L
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METRIC

APPLICATION- PHYSICS- AND
DRIVEN PROCESS-RELATED

|
~

«I'm only interested in mean annual tempe- Assess model performance with respect
rature, therefore my metric should only consider  to the representation of physical processes.
performance wrt. mean annual temperature.»

4

Measures

Typically requires to include more
«I’'m only interested in the Alps, therefore than one variable.
my metric only needs to consider model
performance in this region»

e ¥

Often easy to carry out. Typically more relevant for obtaining trust

) in a model especially wrt.
But potentially dangerous:

Compensating errors might indicate Probably more relevant for climate change
good model performance. signals.
Provides little evidence whether or not Often limited availability of reference data.

the physics are well represented. . ] ] ]
Final scoring can be tricky (=uncertain!)
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METRIC SELECTION (cont'd)

To be informative, performance metric(s)
In model evaluation should ...

... cOver a wide range of aspects
of model performance

... consider several variables
(standard: T and P only)

... consider a larger domain
... consider observational uncertainty

... be transparent
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GENERIC AND APPLICATION-SPECIFIC ASPEC
APPLICATION-SPECIFIC/
GENERIC ASPECTS USER-SPECIFIC ASPECTS
OF MODEL
PERFORMANCE OF MODEL
£l PERFORMANCE
Capturing a mean climatology Capturing temporal variability
Capturing trends Capturing spatial structures

Capturing extremes

|
Include both!
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EXAMPLE 1: THE VALUE VALIDATION FRAMEWORK

User Problem

Q1 Which climatic phenomena are

relevant for my problem?

Phenomena

4

Measures

Which aspects of the mode™
make up these phenomena?

Temporal Spatial Inter-Vari

Aspects

What indices should be used to
quantify these aspects?

Indices

How do | measure the performance
to simulate these indices?

Performance Measures

Maraun et al., submitted

Index Performance Measure

Marginal Aspects

mean bias/relative error
variance relative error

20 season,/year return level bias/relative error
number of threshold exceedances hias

Temporal Aspects

time series mean squared error/
correlation

ACF lag 1,23 N.A.

median of spell length distribution hias

90th percentile of spell length distrib.  bias

minimum,/maximum of annual cycle  bias/relative error

Spatial Aspects

decorrelation length relative error
variogram range relative error
decay length of tail dependence relative error

Multivariate Aspects

Pearson/rank correlation N.A.
probability of joint exceedances N.A.

indices conditional on (no) exceedance as above

d
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EXAMPLE 2: EURO-CORDEX STANDARD

Kotlarski et al., GMD, 2014

- -

EVALUATION
1. Seasonal mean biases at grid point scale for entire RCM domain

Bias of 20-year mean winter temperature (1989-2008)

= re ™\ ﬁPSL-INERIS :

J CRPL

4

Measures

DJF
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EXAMPLE 2: EURO-CORDEX STANDARD EVALUATION

Kotlarski et al., GMD, 2014

1. Seasonal mean biases at grid point scale for entire RCM domain

2. Eight metrics applied to eight different analysis regions,
describing different aspects of model performance

2 W N=

£ 2400
2200
2000
1800
1600
1500
1400
1300
1200
1100
1600
300
200
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EXAMPI.E 2: EURO-CORDEX STANDARD EVALUATION

Kotlarski et al., GMD, 2014

1. Seasonal mean biases at grid point scale for entire RCM domain

2. Eight metrics applied to eight different analysis regions,
describing different aspects of model performance

BIAS Difference (model - observations) of climatol. annual and seasonal mean values (regional averages)

95%-P 95th percentile of all absolute grid point differences (model - observations) based on
climatological annual and seasonal mean values

PACO Pattern correlation between modeled and observed climatological annual and seasonal mean
values at all grid points

RSV Ratio of spatial variances of all grid points [model over observations) of climatological annual and
seasonal mean values

RIAV Ratio of interannual variance (model over observations) of time series of annual and seasonal
mean values (regional averages)

TCOIAYV Correlation between modeled and observed time series of annual and seasonal mean values
(regional averages)

CRCO Spearman rank correlation between modeled and observed climatological monthly mean values
(regional averages)

ROYA Ratio (model over observations) of yearly amplitudes (difference between maximum and
minimum) of climatological monthly mean values (regional averages)
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Provide a way of graphically summarizing different aspects of
model performance

OR DIAGRAMS

Here: Similarity of spatial or temporal patterns (model versus
reference) 0.1

0.2

0.3

Possible due to inter-
relation of several
metrics

Different variants

0.95

Normalised Standard Deviation

0.99
Distance from origin: «<Normalized
and centered RMS difference»

Does not take into account mean 0 1 2 3 4
bias! (but this can be color-coded) Normalised Standard Deviation
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Normalised Standard Deviation

TAYLOR DIAGRAM: EXAMPLE
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Figure B5. Spatial Taylor diagrams exploring the model performance with respect to the spatial variability of mean winter (circles) and mean
summer (triangles) temperature within subdomains AL, BL, FR and MD (see Fig. 9 for subdomains EA, IP, ME and SC). Filled markers:
EUR-11 ensemble, nonfilled markers: EUR-44 ensemble, gray markers: ENS-22 ensemble. The diagrams combine the spatial pattern corre-
lation (PACO, cos(azimuth angle)) and the ratio of spatial variability (RSV, radius). The distance from the 1-1 location corresponds to the
normalized and centered root-mean-square difference (which does not take into account the mean model bias), expressed as multiples of the
observed standard deviation. Note the different number of underlying grid cells per subdomain in the individual ensembles.

Kotlarski et al., 2014
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Bellprat et al., 2012
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3: MUlTIVARIA E SCORE

1 VR TY \/(HIU r f_}’ o ()U r
Pl = —— A
3583 F

Here, V = 3is the number of model variables (T2M, PR,
CLCT), R = 8 is the number of analysis regions
(PRUDENCE regions), 7" = 12 is the number of tem-
poral means (months), and Y is the number of years
evaluated, which depends upon the ensemble consid-
cred. The variables m and o denote simulated and ob-
served monthly means for the respective variable and
region, o, 1s the standard deviation of the interannual
variations derived from the observations, o, 1s the stan-
dard deviation of the internal variability of the regional
model derived from ensemble 1V, and o, is the standard
deviation of the observational error derived from differ-
ent reference datasets. For each variable (T2M, PR, and
CLCT) we use three independent datasets, listed in Table
3, to estimate the observational error.

Pl=0 -> perfect match
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VALIDATION OF TRENDS

NEWS&ANALYSIS

138

GLOBAL CHANGE

Forecasting Regional Climate Change Flunks Its First Test

The strengthening greenhouse is warming
the world, but what about your backyard, or
at least your region? It’s hard to say, climate
researchers concede. Modelers have sharp-
ened ther tools enough to project declining
grape yields in a warmer, drier California
wine country and to forecast that the Mediter-
ranean region will be getting drier in coming
decades, But just how reliable such localized
projections might be reamains unclear.

Mow, a group of global, rather than
regional, modelers has tested a2 widely used
regional model by simulating dimatechange,
not just static past climate, That's how these
rescarchers say all reglonal models should be
tested, but aren’t. Preliminary results show
that the model improved little if at all on the

provide detailed, reliable climate projections
for, say, West Texas versus East Texas. So
modelers began embedding adetailed higher
resolution climate model spanning, for
example, muchofNorth America, in a glohal
climate model. The global model would cal-
culate broad changes and feed them into the
embedded regional model, which would then
compute more-detailed (and, presumably,
mare-accurate) simulations of smaller atmo-
sphenc features, such as storms and fronts,
a5 well as better rendering of the atmos phenc
effiects of surface features such as coastlines
and mountains,

But was regional modeling doing any bet-
ter than global modeling at making regional
predictions? Pavan Racherla, Drew Shindell,
and Gregory Faluvegi,
all of GISS, tackled the

question while doing
regional modeling
for a climate impacts
study. “The fimst thing
we wanted to do was
evaluate the [model]
output,” Shindell says.
“That's what we do
with [global] models™
But they found that
regional modelers were
checking model perfor-
mance only when simu-
lating climatology, the
average climate for a
given perod of time.

Too blue. When simu-
Lating fall predpitation
labove, left), aragional
madel was mastly too
wet and when simu-
lating daily maximum

“That was strange”
Shindell says. *The
key thing we look at is
climate change. That

B o e % % e
firzy view of future climate provided by a
globe-spanning model, More such testmg “is
something that the [regional modeing] com-
munity nesds to do to get its act together”
says global climate modeler Gavin Schmidt
of NASAS Goddard Institute for Space Stud-
ies (GISS) in New York City who was not
imvo lved inthe work.

Regional modeling was the natural next
step for climate modelers. To predict next
week s weather, much less the next century s
climate, models have to take in the whole
planet. But affer several decades of develop-
ment, those planst-scale models still couldn't

Uefth it hasn't been the stan-

dard in regional climate
modeling.”

If a regional model
does a better job simulating climatology,
the three wondered, will it also do a bet-
ter job forecasting climate change? To at
least begin to find out, they considered a
widely used regional model—the Weather
Rescarch and Forecasting (WRF) model—
embedded in the global GISS-ModelE2
over the continental United States. They
simulated the climate of two periods, 1968
through 1978 and 1995 through 2005, to
sec how WRF did at simulating climatol-
ogy. Then they subtracted the carlier period
from the later one to see how WRF handled
climate change.

wars o0 coal.

WEF did not shine. “Skill capturing cli-
matology does not translate into skill cap-
turing climate change,” Shindell concludes,
echoing the group’s paper of late last year
in the Journal of Geaphysical Research:
Atmospheres. “There 1s modest improve-
ment over the [global] model, but it's not
50 large” And most of that improvement
came only when the global model was pen-
odically al lowed to “nudge™ the wandering
regional model back toward a more realistic
broad-scale pattern of climate.

The GISS group does not identify why
WRF failed to improve significantly on thar
global model, but Shindell suspects it has
something to do with what the two kinds
of models are best at. Climatology is deter-
mined mainky by the interplay of the land, sca,
and topography with the atmosphere, which
is rgional models® forte, he says, but those
aren 't changing. Climate change, on the other
hand, progresses by changes in physical prop-
erties such as the migration of jet streams,
changes in cloud cover, and shifts in precipi-
tation patterns, which a global model handles
pretty well on its own.

Other mesearchers say the GISS group
has tackled a problem that has too long been
neglected. “Its an intriguing, very thought-
provoking paper,” says climate saentist Rob-
ert Wilby of Loughborough University in the
United Kingdom. “Its a first step thats to
be applanded™ But it far from a knockout
punch toregional modeling. Instead, “it really
highlights how tncky it is to show the value
added” by regional modeling, Wilby says.

Regional modeler Lai-Yung Ruby Leung
of Pacific Northwest Mational Laboratory in
Richland, Washington, agrees. “The ques-
tions they ask are the right questions, but
it would be much better if done in a mul-
timodel experiment,” she says: Different
models in different combinations could
identify model strengths to be exploited and
weaknesses to be avoided.

Leung is a co—principal investgator
of the North American Regional Climate
Change Assessment Program (NARCC AF),
which ran six regional models in 12 possible
combinations with four global models. But
the climate changes of recent decades wene
50 small and the natoral variations of climate
50 large, NARCCAP models wene not tested
against past climate change as the GISS team
did. That, Leung says, is really a job fora
larger, more international program.

=RICHARD A. KERR

BFEBRUARY 2013 VOL33%9 SCIENCE www.sciencemag.org

CREDITS: RRACHRLA, O SNDELL AMD G FALUVEGUMASA G5 (3

Controversial «<paper» with severe
shortcomings that — nevertheless —
highlighted an important aspect that
is often overlooked:

RCMs are typically applied in climate
change studies, i.e., need to capture
the regional climate response to a
given forcing ->

Problems:

Lack of temporally homogeneous
reference and boundary forcing
data (re-analysis)

Observational / re-analysis period
short and rather small GHG forcing -
> natural variability often dominates

Period to be analyzed further
shortened by granting spin-up time
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MODEL CALIBRATION
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Computational grid
#J?r e ".‘l with Ax = 50 km

+ Address the resolved part of atmosphe- * Representation of unresolved scales by
ric dynamics and thermodynamics. parameterizations (sub-grid)

= Solution of the governing equations of = Typically contain empirical components
fluid motion on a computational grid and are to some extent tuned/calibrated

+ Examples of resolved structures: general g+ Major source of model uncertainty
circulation of atmosphere, low and . )
high pressure systems, mountain - Examples of parameterlze_d processes:
flows boundary layer, convection,

precipitation, clouds, land surface

Model physics typically include a large number of non-constrained parameters
that need to be calibrated («tuning»)

Calibration will affect model performance!

The same is true for further choices concerning model setup (domain
size, time step, relaxation procedure, horizontal and vertical resolution, etc.)

Calibration is typically INTRANSPARENT!

__+ Evaluation might not be «independent» (if the same evaluation

period, reference data and performance measures were used during calibration)
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1°* EXAMPLE: MODEL CALIBRATION

Setup of a CORDEX reference version for the RCM COSMO-CLM

Testing of a large number of model setups (parameter settings
in physics, parameterisation schemes, time step, preprocessing

scheme, etc.)

10-year long simulations driven by the ERA40 re-analysis

Climate Limited-area

.:.:-‘E Modelling Community
t-\' . .
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Mean monthly temperature bias (1991-2000) over mid-Europe [K]

3.5

3.0

ME, T_2M_AV.in K, CLM-ECAD

2,5

2,0

1.5

1,0

— —CLM3

- # -CLMO083
- o =CLM104
—e— CLM105
—e— CLM106
= # =CLM107
== CLM108
-*=CLM112
—t— CLM113
-+« =-CLM114
—— CLM115

10

11

12 13
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1t EXAMPLE: MODEL CALIBRATION (cont'd)

Mean monthly precipitation bias (1991-2000) over mid-Europe [mm]

ME, TOT_PREC in mm, CLM-ECAD

60

50

40

5 30

To
Consider! 20

10
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2" EXAMPLE: MODEI. CA

Development of an
objective calibration
scheme for the RCM
COSMO-CLM

Bellprat et al. 20123,

Bellprat et al. 2012b

>40 parameters varied in
a «perturbed physics
ensemble)

1-year long and 10-year
long simulations

Evaluation over eight

European sub-domains
(«PRUDENCE regions», «Rockel

regions») -> see EURO-
CORDEX standard eva-
luation -> comparability!

10 50 100 150 200 500 1000 1500 2000 2500 3000
altltude [m]
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2" EXAMPLE: MODEL CALIBRATION (contd)

TABLE 2. Perturhed parameters in {top) SHORTand (hottom) LOMNG. The hald entries denote the default vahe in CCLM. For all
perameters 3 mim nd man baund & tested, whil e some individus]para me te m have heen tested maore extensively m s ddition to
that. SHORT i designed to idemify important mode | parameters. In LONG multiple parametens are changed at 2 time, summarizedin

the ssmnd part of the tahls

Famameterproperty Acrommm Value
SHORT
Turbadence
Minimal di fusion mefficients for heat (m” s~ ) Tkhmin o, 1,2
Minimal difusion mefficients for momentum (m” 57"} Thmmin 0,12
Turbulent length scales (m) turh_len | 1000, Sy, 10000 ]
Factor for turbulent heat dissipe o d_heat (12, 15, 101)
Factor for turbulent momentum diesd pation d_mom 112, 15, 1646]
Factor for turbulent diffusion of TRE o_diff (0ol 0k, 10]
Land surface
Sealar for laminar houndary layer roughness rlam_heat 0, 1,3,5,10]
Scalar for laminar boundary layer moughness sea mat_sea |1, 00, 20, 50, 100
Factor for anopy height rat_@m (o, 1, 1)
Rafics of laminar houndary layer thickness for g and h rat_lam o, 1, o)
Surface ares index of the waves over sex [ (1, 15,5, 10]
Surface ares index of the (evaporative) soil c_soil 10,1, 10)
Burface area index of grid points over land c_nd 11, 2, 10]
Roughnes length of a typical synaptic station {m) zim_dix |0LD01, e, 10]
Length scale of subscals srfice patterns over land (m) patlen (00, 100, S0, §000)
Expanent o get the effective surface ansa e_msrf |, 15, 10
Btovmets res Btanos cTsmin |50, A0, B00|
Canvection
Fractionz]l mass flux for downdrafes at LTS mmideps |0z, 035, 05]
Amumead aonvective cloud cover | %) ToUDY |01, s, 05)
Factar for the time scale for cape closuns Tz oS, 1L, 1.5]
Coefficient for determining anaversion from doud water to rain TRTCOm [ DL000 15, U000, UBDLS, 0002, 0015
Penetrative entraimment rate {1 m~") entrpen |45, Bef 1225
Midlevel entrainment rate (1 m ™) entrmid |de-5, Be-5, 1225
Entraimment rate for shallow convection (1m™") entmsc |55, led, Read, 183, 23]
MicTophy sics
Cloud droplet comaentration {1 m™) choud_num | 527, 5eB, 129]
Cloud water threshold for suincon vension qill [, 0000 01, 00001, 0001, 0.01]
Seperating mass between choud and rain {kg) Tstar |356e-11, Réie-ll, T 25e-09]
Factor for fall velodty of snow ik (10, 15, 50]
Radistion
Suhbgrid-scale cloud height sclar ucl |0z, 0S, 0E]
Critical value for normalizsd oversaturation q_eTit 1. 4.7, 10]
Cloud cover st sshration in stistical clowd disgnostic ck_diag 0z, 0s, O8]
Inierval {in time stepe) hetween oo calls of the radiation scheme hinorad |0, 075, 1)
Convective subgrid doud scalar com_ck [
LONG
Fhysics
Canvection schems type Ty _type IF5, Thedtke
Suhgrid-scale arography jE D, off
Tramsport of rain and snow lrams_prec Dm, off
Prognostic rain and snow Iprogpre: D, off
Cloud water and cloudio ity pe_gsgr D, off
Stomata resistane (sm™ ') cr=min | 150, 5060)
Length scale of subscals surfsce patterns over land (m) patlen | 200, S|
MumeTics
Mumeria] schems LF.REK Lespfrog or Rungs-Euttz
Asmelin filter alphases l0s, 07, 1.4)
Caorrection factar for hormontal & fusion of moistune hd_mar_q |, 25, 0S|
Carnsction factar for horimontal difusion of tempersthrs hd_aoar_t |0, 025, 0375, 0U75]
Caorrection factor for hormmntal diffusion of u, v, w hd_aoar_u |25, 0375, 075,1]
Inierval ruming the convection schems minaom L 2]

Bellprat et al., 2012a
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2= EXAMPI.E MODEI. CAI.IBRATION |cont‘d)

Mean annual cycle (1991-2000) 0
of temperature in the perturbed
physics ensemble over the eight
sub-domains

5

To
Consider!

JFMAMJ JASONDUFMAMJ JASOND

Bellprat et al., 2012a
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2" EXAMPLE: MODEL CALIBRATION (c

Mean annual cycle (1991-2000)
of precipitation in the perturbed
physics ensemble over the eight
sub-domains

PR [mm/d]

JFMAMJJASONDUFMAMJ JASOND

Bellprat et al., 2012a
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Mean annual cycle (1991-2000) 0

) —CRU-TS2.1 CLCT
of cloud cover in the perturbed

physics ensemble over the eight

70
sub-domains 3

100

5

To
Consider!

CLCT [%]

100 ‘ —100

JEMAMJJASONDJEMAMJ JASOND

Bellprat et al., 2012a
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Influence of calibration varies

t (a) seasonally
. (b) regionally

7/ (c) between means and «extremes»

e .y P

5
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Consider!

Bellprat et al., 2012a
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2" EXAMPLE: MODEL CALIBRATION (contd)

i
o

Skill (PS) when sequentially adding
additional years to the score

0.9

08—t —————————————— —

&
5 0.75¢ L
Zznsider! A /\f—t::b%ll\ \
0.7} T ]
0.65. \ '

> \ 5 T %80 1995 2000

Bellprat et al., 2012a

\Worst / best simulation in the first year

Relative performance not stable in time!

(here: mostly due to spin-up of soil water content)
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JJA Temperature Bias 1991 - 2000 JJA Temperamre Bias 1991-2000
. CCLM «CORDEX>» (50 km) | Optlmlzed (objectlve

: . " calibration procedure) 3

' ' | 25

2

15

5 — 1

K
To —
Consider!

—-1.5

[opT]

)~

Bellprat et al., in prep.

In this case:

Model calibration is transparent, published and «objective»
(usually NOT the case)
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SUMMARY: EFFECT OF MODEL CALIBRATION

(IPCC AR5, WG1, Chapter 9, 2014

Model tuning directly influences the evaluation of
climate models

The quantities that are tuned cannot be used in
model evaluation

Quantities closely related to those tuned will
provide only weak tests of model performance

Model quality is tested most rigorously through the
concurrent use of many model quantities,
evaluation techniques, and performance metrics
that together cover a wide range of emergent (or
un-tuned) model behaviour.



INTERNAL VARIABILITY



INSTITUTE FOR ATMOSPHERIC AND. CLIMATESCIENCE e ST B
e i = W

ETH:zurich gue—=——rr= - R = A

INTERNAL CLIMATE VARIABILITY

Unforced random variability in climatic parameters due to internal
non-linear processes in the climate system

15 Results (e.g., temporal and spatial patterns) can strongly depend on
consicert - slight perturbations of the (typically not well constrained) initial
conditions

This introduces uncertainty in both climate scenarios and model
evaluation, especially on regional/local scales, for short analysis
periods and for extremesl!

“Side-effect”: A free-running GCM initialized at some historical point
in time will have no temporal correspondence with reality!
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THE «CLM CONSORTIAL RUNS»

One RCM (COSMO-CLM) driven by several realizations of one GCM (ECHAMS5)

— =

Mean annual 2m Temperature [°C], EUROPE (land only)

13
+3.5°C
12' ’A
|&_>. 11 1
> &,
To B
Consider! o
Q
g o +2.5°C
"é‘ . (based on 30-year
~ 87 mean periods)
74
thick lines: 9—year running mean
6 T T T T T T T T T T T T T
1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 210C
year
c20_1 c20_2 C20_3 B1_1 B1_2 A1B_1 A1B_2
C20_1 C20_2 C20_3 B1_1 B1_2 A1B_1 A1B_2

Each realization is equally likely!



IVIN REGIONAI..CI.IMATE SIMUI.ATIONS

Even , slightly differently
initialized / perturbed RCM experiments with exactly the same
setup will differ from each other to some extent (and therefore
also performance measures)

This effect is random!!

IV influence is

(partly averages out on longer tiem

scales)
(e.g., individual grid cells)
...typically than for temperature
...typically (RCM solution less constrained by boundary
forcing)

(RCM solution less constrained by
boundary forcing)
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: INFLUENCE OF IV ON 10-YEAR
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RCM CLIMATE

10 CRCM simulations for 1980-1989 driven by NCEP/NCAR re-analysis with slightly
perturbed initial conditions

Fig. 7 Square root of the
variance between the 10-year
climate of each member of the

ensemble /{E from 1980 to
VX

1989 for the mean-sea-level
pressure (MSLP; hPa) with ten
members in a summer and b
winter. Computation is repeated
for e—d the precipitation (PCP;
mm/day) and e—f the screen
temperature (ST; °C)

IV influence larger in summer than in winter and

Winter

a)

MSLP

c)

PCP

Lucas-Picher et al., 2008

larger in the East than in the West.
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EXAMPLE: INFLUENCE OF IV ON 42-YEAR RCM CLIMATE

4 COSMO-CLM simulations for 1958-2000 driven by ERA40 re-analysis with slightly
shifted start dates

Mean seasonal temperature difference (42-year means) between the sensemble members

5

To
Consider!

Roesch et al., 2008

“It can thus be concluded that the model’s performance in predicting
climate extremes cannot be properly evaluated using
only one model simulation”
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YESTERDAY MORNING...

Lachen (Switzerland), 408 m a.s.l., 6" November 2014

N1 A W N =

Termin des ersten messbaren Schnees in Ziirich
Winterbeginn: 1. Dez. = Tag 335
450
400
Consider! o
m©
=1
S 350
6 2 i
2 | Ul L
7 o 300 -
o)
AL
8 250 - H
Rare event (not extreme though). 2010
eteoSchweiz

An RCM that fails to produce this in a 10- or 20-year long
simulation is NOT necessarily deficient!




TEMPORAL AND SPATIAL
CORRESPONDENCE



boundary forcing
(global)

EVALUATION RURMN

1

Re-analysis
(perfect boundaries)

Evaluation of
downscaling

To GCM / Evaluation of
consider! | historical GHG . ” GCM-RCM chain|

Internal variability and uncertain

.

s m Not

emporal c
b+

SENSITIVITY RUN
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REALIZATIONS OF THE SAME CLIMATE

(annual mean temperatures, average over European land surface)

“‘n‘ ) V #\," v )

e —

5

To
Consider!

Observations No temporal correspondence (year-to-year,
GCM-driven run #1 day-to-day)
GCM-driven run #2 Evaluation has to be carried out with respect

to climatologies

But: Evaluation of (forced) trends,
interannual variability, transition
probabilities, etc. possible
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TYPES OF RCM EXPERIMENTS

boundary forcing

[ //. “‘f r r/‘ ‘u\‘) |

Re-analysis / | p' Evaluation of

(perfect boundaries) ; - N downscaling

Temporal correspondence with reality glven by real-world boundary forcmg

5 / ' T — N | et Y CLIMIATE SCENARIO
f'; ! .; 3’ )
To GCM / oL f Evaluation of

Consider!historical GHG ”~ GCM-RCM chain

SENSITIVITY RUN
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MEAN ANNUAL TEMPERATURE (0OBS. AND ERA40-driven RCMs)

(mean over European land surface)

Mean annual 2m temperature, 1961-2000 [°C]

10.51

5

To
Consider!

1965 1970 1975 1980 1985 1990 1995 2000
c4l DMI ICTP MPI UCLM
CHMI ETHZ KNMI OURANOS EOBS vs2
CNRM HC METNO SMHI — e CRU TS 1.2
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MEAN ANNUAL PRECIPITATION (0OBs. AND ERA40-driven RCMs)

(mean over European land surface)

Mean annual precipitation, 1961—-2000 [mm/day] EDOM

5

To ) 1.2
Consider!
0.9 1
0.6 1
0.31
0 T L) L] T T T T
1965 1970 1975 1980 1985 1990 1995 2000
C4l DMI ICTP MPI UCLM
CHMI ETHZ KNMI OURANOS EOBS vs2

CNRM HC METNO SMHI = === CRU TS 1.2
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I.IMITATIONS OF EVENT-WISE VAI.IDATION

Direct correpondence diminishes on short temporal and small spatial scales and
also for features that are influenved by the memory of the land surface.

E-OBS HYRAS REGNIE

Elbe flooding 2002:

[mm/day]
Mean precipitation
(10th-13th August) in
three different ob-

5 servational reference
datasets and three

To different RCM experi-

Consider! ments driven by the
ECMWF analysis

S0

Observations

«Forecast mode» Regular cllmate mode experiments (free-
(frequent re-initialization) running RCM), differing in initial conditions

REMO

Kotlarski et al., 2012
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FORECAST-MODE AND NUDGING

FORECAST-MODE

Frequently (e.g., every 24 hours) re-initialize the RCM’s prognostic fields with the
interpolated boundary forcing (analysis, re-analysis) in the interior domain -> poor-
man’s «assimilation» of observations into the system.

Used to construct regional re-analyses.
Reduces the degrees of freedom of the RCM and prevents a large influence of IV.

5 Cannot be applied in scenario context! Evaluation less informative!

(SPECTRAL) NUDGING

Consider!
Apply large-scale boundary forcing also in the E@ \ LN ‘f‘gfc?:;a‘r:e n;.a%:my
interior domain (but only for large scales and in 7~
upper atmosphere and without full replacement !
of RCM solution).

-

| Additional nudging

Keeps RCM flow close to boundary forcing; redu-
ces IV by reducing degrees of freedom for RCM.

Can be applied in scenario context.

__ » Special model setups that increase the temporal correspondence with the
real world (by reducing IV), but that are less informative wrt. model quality
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OBSERVATIONAL UNCERTAINTY
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TIONAL UNCERTAINTY - OVERVIEW

REGNIE

Elbe flooding 2002:

Mean precipitation
(10th-13th August) in
three different ob-

5 servational reference
datasets and three

To different RCM experi-

Consider! ments driven by the
ECMWF analysis

Observations

Kotlarski et al., 2012
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OBSERVATIONAI. UNCERTAINTY - ORIGINS

Measurement errors (e.g., automatic weather stations)

Deficient translation of measured quantities into

validation parameters (e.g. radiances to temperatures, cloud
coverage or precipitation rates)

Inappropriate gridding procedure and/or target
resolution

Spatial and/or temporal inhomogeneities of
underlying station dataset

Representativeness errors, including physiographic

effects (Does a grid point of an observational grid really represent an
areal mean value?)



Systematic undercatch of rain gauges
due to deformation of wind field and
evaporative losses

Strongly depends on site
characteristics, ambient weather
conditions and measurement device

5

To
Consider!

Most important for snowfall and during
strong winds (less than 50% of true
precipitation)

Usually not corrected for in gridded
products (e.g., E-OBS)

A wet model bias of 10-20% can well be
explained by deficient observations!

Only of minor importance for statistical downscaling

Complicates comparison of SD and RCM performance
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TEMPORAL AND SPATIAL INHOMOGENEITIES
E-OBS is based on les than 3.000 stations, spread unevenly across
approximately 18.000 0.22 grid-boxes..

EOBS v07: length of station records (since 1950) [years], daily mean temperature (tg)
total number of stations: 3796 60

50

5

Consider L 40
- 130
- 120

10
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TEMPO

2000

Rainfall <99%
Rainfall <20%
Tmean =20%
Tmin <20%
- Tmax <20%

1500
l

Al
e
_."I‘| . A AR A q,\_wf r
— . Hh*!‘l U D A Y
f g Y

.
Al e

Mo. of stations
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I
¥
I
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';I.I_-\ '.L I i [ L
T

Iy
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'l'."': ) I"‘\:]

1950 1960 1970 1980 1980

Year

2000

Figure 2. The number of stations with less than 99% and

20% missing observations for each month.

RAL AND SPATIAL INHOMOGENEITIES (contd)

Haylock et al., 2008
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RAL AND SPATIAL INHOMOGENEITIES (contd)

EOBS vO07: length of station records (since 1950) [years], precipitation (rr)
total number of stations: 7067 60

5

To
Consider!

considerable smoothing of spatial variability and
of (daily) extremes! (Hofstra et al. 2010)

WTRESL L
1 N e
. e, N\

" sy willé *

. -
- .I.:= - -'.. -'.
e Y .
. -
.

“- '

=4
= 7

Nominal resoution (~25km) = effective resolution?

Very probably not!
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INFLUENCE ON MODEL EVALUATIO

RCMs versus na-
tional grid with

high underlying
network density

5

To
Consider!

RCMs versus E-OBS —

.07
£0.57

de M|

£ 4z
4g04

4857

validation against E-OBS

HIRHAM RACHO RegCM
1 11 1% 15 18 17 & 1 2. 13 1+ 15 48 A7 18 10 2 13 14 15 18 17 1B 18
fergRata [E] kengituda [E] Eengihu [E]
REMO _ RCA RCA (ERA-40)
|
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2 19 14 15 18 1T 1@ 18 f2 13 14 145 8 17 10 18 2 13 W 15 18 17 10 1B
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Figure 6. Differences m the 5% quantile of T, in DJF between control simulations of RCMs (19%61—

1990) and gridded observed data for (top) GnSt and (bottom) E-OBS.

Kysely and Plavcova, 2010
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INFLUENCE ON MODEL EVALUATION

Evaluation of mean annual temperature (1981-2000) and mean annual precipitaton
(197 1-1998) over Switzerland: 3 observational references and 17 ERA40-driven RCMs

Accounting for 20% undercatch

6_
k=) (o]
E [ o | i Lo ]
E 5 e o]
< L O]
= E En M B <
o n
S 4 B < e
§ o
o
o]
3_
T T T T T T T T T T T T T T T T T 11
INRIFSSSNONOALSSOTRZTS
SR BN o ITO = zZ O —_
N T o O < Z = =
=Qu c3 b TI2Teh~2r58
RCM = o
3 Jan Rajczak, IAC ETH
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SYSTEMATIC TOPOG

Temperature validation on grids has to account for different surface orographies!

Ensemble mean orography [m] C4l — mean [m] CNRM — mean [m] DMl — mean [m]

5

To
Consider!

Height-correction is required before comparison/evaluation.
Introduces additional uncertainty into evaluation procedure.
No problem for SD.

300
250
200
150
100
50
20
10

-5
=10
-20
-50
-100
-150
-200
-250
-300
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SYSTEMATIC TOPOGRAPHIC EFFECTS (cont'd)

A standard lapse rate of 0.6 or 0.65 K/100m is often applied -> not appropriate in
most cases due to regional and seasonal variation of lapse rate!

Mean monthly lapse rates (1961-2000) over the Alps (AL), Eastern Europe (EA), the Iberian Peninsula (IP), and
Scandinavia (SC) in E-OBS and the GCM-driven ENSEMBLES RCMs

standard

Temperature |lapse rate [°C (1 00m)1]

. 0.2 0
12345678 9101112 12345678 9101112 12345678 9101112 12345678 9101112
Month Month Month Month
ECHAMS5—-driven ARPEGE-driven BCM-driven — — — E-OBS
HadCM3QO0-driven HadCM3Q3-driven HadCM3Q16-driven

Alternative (more complicated!):
Apply observed/simulated regional lapse rates for height correction.




PRESENT DAY PERFORMANCE vs.
CLIMATE CHANGE SIGNAL

&

NON-STATIONARY MODEL BIASES
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OVERVIEW

: Model bias cannot necessarily be assumed to be
stationary in time, particularly if two different climatic states are
considered

If model biases are non-stationary: Limited significance of

evaluating performance in historical periods;
|

5

To Observational and historical simulation record typically too
“™ short to diferentiate between two climatic states

No future observations available for assessing future model
biases

.. Clear relation between skill in present-day climate and
S|mulated climate change signal usually not found

.. Strong indications for non-stationary biases
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Do these models show a stationary
temperature bias on the spatial and
temporal scales considered?
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TEMPERATURE DEPENDENCY OF RCM BIAS

a
C4IRCA3 CNRM ALADIN ——DMI HIRHAM - -- ETHZ CLM 30+ 24'
NRM
— ICTPRegCM - -- KNMIRACMO —— HCHadRM3QO - -- HC HadRM3Q3 — DMI B
— HC HadRM3Q16 --- MPIREMO —— SMHIRCA 251 ——= ETHZ A
—ICTP N
- - = KNMI 47
oL —HCQO 4
--- HCQ3
—— HC Q16
~ - == MPI /
< B — swn
=
;{3 S“ 30 5
~ 10 R
5 E A
5r <o 4
To 2 10
Consider! 5 {
or o P
_3 L
1 1 1 1 1 1 1 1 1 1 1 1 . . . . 0 . 10 . 20 ‘30
2 4 6 8 10 12 14 16 18 20 22 24 a - 10 " 20 e 20
Tops °O) Tops (°C)
Figure 1| Model temperature biases. Linear fits to ERA40-driven monthly Centred Q-Q-Plot for GCM-driven
mean model temperature biases versus observed monthly mean RCMs (1961-2000)
temperatures for the Mediterranean subregion for 1961-2000. Points
denote monthly KNMI RACMO values (blue for the cold period NDJFMA -
and red for the warm period MJJASO) and the dashed blue lines (see Warmer months with
legend) are best fits based on these points. Steadily hlgher

Mediterranean: Most RCMs show an temperature bias

increasing warm summer bias with
temperature

Boberg and Christensen, 2012
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EVAI.UATION VS. CI.IMATE CHANGE SIGNAI.

Should we nevertheless focus on the best-performing models?

Are bias changes smallest fore these models? N Ol
-
HadG EM2 CCL ) Linearly increasing bias? .
40 BT — .
— Uncallhraled 7 .3:/,7 2 = ‘j. 2
Calibrated 5 87,
| /4 ] —
5 35 — — — Linear regression (50%) ; 4 /,/ / r=-0.99
» | Linear regression (10%) o | — m>
Cznsider! 30 _E_E_ 4
25 @
3 E m’
= 0
= 20 E 6 Larger soil moisture decrease
= 151 — in calibrated ensemble!
Q
w
10+ « -8t}
5 I b T b
0 " L L L L =10 . *
0 5 10 15 20 25 30 35 4 0.15 0.16 017 0.18
T2M g5 Soil moisture [m3/m?]
Empirical Q-Q-plot of observed and simulated Soil moisture in control period (x-axis)
(COSMO-CLM PPE ensemble) JJA temperatures versus soil moisture changes

over the Meditteranean
Bellprat et al., 2013
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Control period Control and extrapolated scenario period
12 . - 1 15 - . .
@® ENSEMBLES @ ENSEMBLES
10 [~ ] Unqalibrated @ Uncalibrated
., @ Calibrated % © Calibrated
~. —_— o Linear bi i
B - . Ijgﬁqfcﬁﬁdgncg 10 | Q inear bias correction
6
4t 5
8 a| @
m m
0 ol
-2
5 -4 -5} unphysical space
To -6 ~
Consider! g a 7 10 b
0 01 02 03 04 05 06 07 08 ~-04 -02 0 0.2 0.4 0.6
Evaporative fraction Evaporative fraction

Figure 4. (a) Summer temperature biases for all PPE and MME simulations compared to the respective evaporative frac-
tion over the Mediterranean region. The simulations show a linear relationship (significant at 5%) with a 95% uncertainty
range in grey. (b) Filled circles for control period as in (a); in addition, empty circles show extrapolated temperature biases
and evaporative fractions for the scenario period, assuming a linearly increasing temperature bias as proposed by BC12, and
a linear relationship between bias and evaporative fraction as determined from (a).

Translation of linearly increasing model bias to constant model bias in
calibrated ensemble, i.e., smaller bias changes in uncalibrated ensemble!

Regular delta change methodology: uncalibrated ensemble provides the better
estimate of climate change signal!

Bellprat et al., 2013
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PSEUDO

Further indications of non-stationary model biases:

«

RCM 1

» framEWOrl(S (e.g., Vrac et al. 2007, Maraun 2012, Bellprat et al. 2013)

4

5

To
Consider!

Calibrate
bias
correction

A

scheme v

RCM 3

RCM 2

a

v

Bias-corrected

RCM 1

a

v

Bias-corrected

RCM 3

Bias-corrected
RCM 2

4

Reference RCM (= pseudo reality)

A

Compare
bias-corrected
Scenarios to

y Pseudo reality

CONTROL

SCENARIO

Cannot uncover all kinds of bias non-stationarities (common non-stationaries

possible)

But: Provides strong evidence for bias non-stationarities over some regions and
for some parameters



VALIDATION OF PHYSICAL
RELATIONS
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PHYSICAL RELATIONS

Very relevant question:

e.g.: - Connection between large-scale airflow and local precipitation (Maraunet al.,

- Influence of snhow cover on 2m temperatures (snow-albedo feedback!)

5 v V Diagnosed intensity of
3 gl o it i i noio 1 thespringtime snow-
Cznsider! : : : : : ° : : @ : : : : . albedo feedback in the
© . Alps in the ERA40-driven
O 2f- ¢ L b P ~REEEEE R e RN SRRERES -...ENSEMBLES RCMs
o A : : : : ] : : : : : : :
L o0 T e 5
SV s s A
; : ; é ; ; : ; ; ; : o) - 5_ < As diagnosed
E E E E : E E vooe . . ; from observations
0 : : : : : : . : : .\ : : : ‘(f\
0 ¢t on o1 i 1 SAF considerably over-
-1 zl - zl ZI e e o c|> . Z' é " C') estimated by most
J o 9 = = g g § = T < o Y = models!
O o (o T T @ & (80] w « o = O
N o2 4 £ ZEZ 2 = Z ¢ I 2 o0 2 Z
r 3 £ T T 3 T 3% 7 = 6 ¢ £ @© Have to be treated with
L » s 9 T 8 T = £ 1 9 I S careconcerning high-
3 2 & % & & o £ 2 2 : : gnig
b - O F O X alpine climate changel!
s L E L ) ] = A
= £ = O Winter et al., 2014
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SKILLFUL SCALE

Can a climate model really be analysed and evaluated at ist nominal spatial resolution?
(Several grid cells are required to represent atmospheric phenomena!)

REPRESENTATIVENESS

Should we assume that the simulated location of some phenomenon

is identical to the «true» location?
(or are there systematic spatial shifts in the climate model output)

QUALITY OF BOUNDARY FORCING

The skill of an RCM depends on the quality of the supplied boundary forcing!

SPATIAL CORRELATION OF MODEL BIAS

Biases at individual grid cells cannot be assumed to be independent of each other
(important for hypthesis testing)
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MODEL WEIGHTING
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MODEI. WEIGHTING RATIONAI.E

Weight/rank models in multi-model climate projections according to their
performance in present day/past climates ->

Underlying assumption: Models that perform better in present day/past
climates are more reliable

Good performance -> high weight, bad performance -> low weight
Simplest scheme: equal weight (one vote for each model)

6 Extreme but widespread variant: Selection or exclusion of individual
models

Weighting

:

| @

: -/ @

A g >
J

Evaluation \WXeight in scenario
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WEIGHTING: RISKS

.-—__,...-..—-‘-""_ﬂ'-

e _al®

\Xeighting schemes potentially have a strong influence on final
outcome

But: Any weighting scheme includes ,
related to both the selection of the input information and the
way in which this information is used

Choice of metric can I

Some chance that weights are inappropriate (e.g. non-
stationary biases) -> equal weighting preferable

Eliminating models can be risky!

«Unless there is a clear relation between what we observe and
what we predict, the risk of reducing the projection accuracy by
inappropriate weights appears to be higher than the prospect
of improving it by optimum weights.» (weigel et al., 2010

RCMs: Driving GCM determines large-scale climate change
signals to a considerable extent and also needs to be considered
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EMBLES WEIGHTING SPECIAL ISSUE: OVERVIEW

Vol. 44: 179-194, 2010
doi: 10.3354/cr00916

CLIMATE RESEARCH
Clim Res

Published December 10

Contribution to CR Special 23 ‘Regional Climate Model evaluation and weighting’

OPEN
ACCESS

Weight assignment in regional climate models

Jens Hesselbjerg Christensen'*, Erik Kjellstrém?, Filippo Giorgi®, Geert Lenderink?,

Markku Rummukainen?®

Series of papers in a 2010 special issue

Exploratory performance-based weighting of the ENSEMBLES

models (ERA40-driven evaluation runs)

Combination of 6 specifically designed performance metrics

Exploitation of different aggregation/combination
procedures of the individual weights
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IGHTING SPECIAL ISSUE: METRICS

Metric Variables Period Reference Data type Seasons Area Source
data set
fi Z500hPa 1961-2000 ERA40 Daily DJFM, JJAS Minimum domain Sanchez-Gomez et al. (2008)
fy P T 1961-2000 CRU TS1.2 Monthly DJF, MAM, JJA, EUR Coppola et al. (2010)
SON
1 P, Thin, Tmax 1961-1990 EOBS2.0 Daily DJF, MAM, JJA, EUR Kjellstrom et al. (2010)
SON
1y P, Thin Tiax 1971-2000 EOBS2.0 Daily DJF, MAM, JJA, EUR Lenderink (2010),
SON Buonomo (unpubl.)
fs T 1961-2000 EOBS2.0 Monthly DJF, MAM, JJA, Average of 8 Lorenz & Jacob (2010)
SON, ANN subdomains
fs P'T 1961-2000 EOBS2.0 Monthly EUR Halenka et al. (unpubl.)

fl
I

ot uh N gt

Christensen et al., 2010

Large-scale circulation based on a weather regime classification

Meso-scale signal based on seasonal mean temperature and precipitation
Probability density distributions of daily and monthly temperature and precip.
Extremes in terms of re-occurrence periods for temperature and precipitation
Long-term trends in temperature

Annual cycle in temperature and precipitation
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THE ENSEMBLES WEIGHTING SPECIAL ISSUE: COMBINATION

Combination of the six individual metrics into one final weight
for each RCM

Several options tested

(1) Wprop: Simple multiplication of weights  (2) Wepy

6
Wepop = 117" (1) Spread of weights is reduced by varying n;
(ratio between highest and lowest individual

6 whgre all the individual weights are first norma]iged model weight = 1.2 for each weight)
to yield a value between 0 and 1 (see accompanying
Weighting papers in this issue, and references in Table 2) before
entering Eq. (1). The final weight (Wpgep) for each
model is also normalized across the models in order to (3) Wirank

facilitate application to the model ensemble. The sim-
ple multiplication can be refined by allowing for the
exponent n; in Eq. (1) to be chosen as any positive
number. Assuming n; = 1 implies weighting the vari- i
ous metrics equally, whereas choosing any positive We'ght'
value different from 1 shifts the emphasis across the
individual metrics (a value of 0 would imply equal
weighting of the RCMs). This latter approach would
be warranted if some metrics were considered to be
more fundamental than others, for example when
applying the method to a specific impact sector or if
some of the metrics were not independent from each
other. Other methods could be introduced based on

Models are first ranked for each individual metric.
Ranks are summed and transformed into final
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EMBLES WEIGHTING SPECIAL ISSUE: RESULTS

0.3 |
- Largest differentiating spread for \X/prop
B Werob
. m Wgepu Overall performance ranking rather
0O Wrank stable

0.2 But: Spread of final weight dominated
< by spread in 2 metrics only (f,, f,);
reason: these metrics are calculated by

(@)

= multiplication of several sub-metrics

L -
6 -% Seasonal and regional variability of final
Weighting 3

= weight

0.1 -
H 0.066:

equal weighting

, | |

1 2 3 4 5 6 7 )8 9 10 11 12 13 14 15

Fig. 2. Wopop, Wiepy and Wyank for ea The «WINNEDP ate models
(RCMs). See Table 1 for model numbers and Table 3 for definition of weights

Christensen et al., 2010
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THE ENSEMBLES WEIGHTING SPECIAL ISSUE: RESULTS

Equal weights Weighted
b) EE

== )
41 (=]

=]
Observed (°C)

Difference (*C)

Fig. 3. Summer (JJA) temperature at 2 m | Tyy; °C). (a) E-OBS; (b) difference between unweighted ensemble mean and E-OBS; and (c) differ-
ence between weighted ensemble mean and E-OBS. Panels 1-15 show the difference between model and E-OBS for each individual regional
climate model (see Table 1 for model numbers). The left-most color scale applies to panel (a) only; the rfdght-most color scale applies to
all other panels Christensen et al., 2010



THE ENSEMBI.ES WEIGHTING SPECIAL ISSUE: CONCI.USIONS

Combination scheme only slightly impacts final ranking

Quality of weighted ensemble mean NOT consistently superior
to equal weighting

Model weights are relative and only apply to exactly this
ensemble

Metrics do not consider all aspects of model quality!

6

Weighting

Ranking for individual metrics partly different from overall
weight

Intrinsic uncertainty: Quality of reference observations (E-OBS)!
Correlation between individual metrics

Choice of metrics and their combination !

Systematic GCM biases in scenario studies not yet considered...

Non-stationary model biases not considetred
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Abstract. EURO-CORDEX is an international climate The analysis confirms the ability of RCMs to capture the
downscaling initiative that aims fo provide high-resolution basic features of the European climate, including its vari-
climate scenarios for Europe. Here an evaluation of the ERA- ability in space and time. But it also identifies nonnegligible
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OBJECTIVES

e o
e

Highlight
Assess

experiments

Establish a
developments

of EURO-CORDEX RCM ensemble in

reproducing present-day climate over Europe under

“perfect boundary conditions” (ERA-Interim
forcing)

for future model
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DVERVIEW onNPERFORMANCE

Consider both the 12 km and the 50 km ensemble
Focus on temperature and precipitation

Focus on monthly, seasonal and annual mean
statistics

7 Apply simple and reproducible metrics

Example

—/ © Study is of a descriptive nature and does not try to
ultimately explain individual model biases

Potential benefits of higher resolution not explicitly
addressed
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DATA AND METHOD

®* ERA-Interim driven EURO-CORDEX
ensemble (1989-2008)

¢* EUR-44 (50 km): 8 experiments
®* EUR-11 (12 km): 9 experiments

®* 6 different RCMs, 1 global model
CCLM 4.8.17 (CLMCOM) : WRF 3.3.1 (IPSL-INERIS) |
REMO 4.8.17 (CSC) ; WRF 3.3.1 (CRP-GL) !
RCA 4 (SMHI) ! i
RACMO 2.2 (KNMI) ARPEGE 5.1 (CNRM)
HIRHAM 5 (DMI)

® 16 ERA40-driven ENSEMBLES runs
8 (25 km, 1981-2000)

Observational Reference

®* E-OBS v07, 0.22° (25 km), daily resolution
®* EUR-44 evaluated on 50 km, EUR-11 evaluated on 25 luim

UL WN=—

=

Example

{2400

2200
2000
1800
1600
1500
1400
1300
1200
1100
1000
900
800G
700
600
500
400
300
200
100
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DATA AND METHODS (contd)

2.

Seasonal mean biases at grid
point scale for entire Euro-
CORDEX domain (EUR-11)

2400
2200
2000
1800
1600
1500
1400
1300
1200
1100
1000
900
Boo
700
[lele]
500
400
300
200
100

Eight metrics applied to eight
analysis regions, describing
different aspects of model per-
formance (EUR-11 and EUR-44)

°* Temporal and spatial means

¢ Spatial variability
° Temporal variability
® Mean annual cycle
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EVALUATION METRICS

BIAS Difference (model - observations) of climatol. annual and seasonal mean values (regional averages)

sueaw
jeneds
pue
Jesodwia]

95%-P 95th percentile of all absolute grid point differences (model - observations) based on
climatological annual and seasonal mean values

S
PACO Pattern correlation between modeled and observed climatological annual and seasonal mean 8 ?,
values at all grid points = 5
<

RSV Ratio of spatial variances of all grid points (model over observations) of climatological annual and
seasonal mean values

UL WN=—

RIAV Ratio of interannual variance (model over observations) of time series of annual and seasonal
mean values (regional averages)

=

TCOIAYV Correlation between modeled and observed time series of annual and seasonal mean values
Example (regional averages)

Apqelen
Jesodwia]

CRCO Spearman rank correlation between modeled and observed climatological monthly mean values
8 (regional averages)

912h>
jenuue
ueaiN

ROYA Ratio (model over observations) of yearly amplitudes (difference between maximum and
minimum) of climatological monthly mean values (regional averages)

Only selection shown ...
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WINTE

—_—

e

e ___ll®

(DJF) TEMPERATURE BIAS mean 19392008, EUR-11

Warm bias over S and SE Europe

[K]

-l _
5 -4 -3 -2 -1-05051 2 3 4 5




INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENGE e

ETH-rich

SUMMER

- P

Bias pattern strongly

: “ MO (C O O Orapry
-refated 1o topograp)

Py UHOH ‘
) 64“ . {00 B

ersiste

[K]

Pronounced warm summer bias (S and SE Europe)

5 -4 -3 -2-1-05051 2 3 4 5
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Wet bias dominates

mean 1989-2008, EUR-11

'Ez:iPSL-INERIS

Take care: E-OBS nog‘&qgrg{;%iaifmﬁystematic undercatch
[%] _

-70 -50 -40 -30 -20-10 10 20 30 40 50 70 100
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EXPI.ANATION OF OVERVIEW FIGURES

4 - éSub-domaih ® EUR-11
34 ? z z z O EUR-44
@ 1 K S 2
3 ] Sef Vg, !D—i 88 < 3 Range of
g 0 o= ® 079 : —* % &l' B E| = ENSEMBLES
1 - .C? © LD °Q - %e vy (16 models)
: : '. @] c
2 4 o .g : l : v
3 -
7 4
B DJF MAM JJA SON YEAR

Sub-domains shown:

Eastern Europe |
Scandinavia (SC)

), Iberian Peninsula (IP), Mid-Europe (ME),
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Temperature BIAS [K]

Temperature BIAS [K]

@® EUR-11
O EUR-44

34— f : : : 34
24 : : : : 2 :
5 5 9. : : 5 :
14 : : s : 1 :
o L o 8 e8 i : gw ; 6 :
Y ) ® e : : e® :
-14535: % . eo . %Ye | |
B o : e o : :
: L ) :
2 4 ® L 2 :
3 3
44 4 -
T T T T T T
DJF MAM JJA SON YEAR DJF MAM JJA SON YEAR
‘1 ME | | | 4 sc
3+ : : f ; 3 :
27 i i s
I BN R SR |
0 : (.?n : 8 _ : _ QQ : o - : :
] 8% e % s ws 1-:5'059-9 %!. so;B
, . *9 L : : ) el o OQ:)O f Cﬂ) - ®
R R : [ ] :
: : : : : : < e ° : :
3 . . . -3 : : : .
44 Cold bias dominates, except S and SE Europe in JJA
I DJF MAM JUA I - I - . ‘ ‘ ‘ ‘ l
Relative ranking of models rather stable
® CLMCOM-11 ® CSsC-11 @< - - - - I
O CLMCOM-44 O CSC-44 o« No obvious benefit of increased resolution

Warm summer bias and cold winter bias reduced wrt. ENSEMBLES
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PRECIPITATION. Reglonal and temporal mean blas [%]

184 ga | 3 180 { |p | — @ EURM
160 1 : : 160 1 : ? O EUR-44
= 1404 - : : 140 4 : : .
S~ : : ! : : : :
P : : 120 9 s z z
2 100 P— 1 100 4 5 5 5
@ 84 g : i : 80 1 : : :
§ e %8 O ® ; - 60 | - : :
g o] N amc o8 eg. gt | e ¢ °_zoéo e
24 4 S Mol B 045 e el . W
8 0T — 5 o L s
o -20 4 o : L 20 4 : 8 ©] % : :
40 4 : Q : Q 40 - : . : :
60 - : 98 132 202 144 576 60 : 176 162 O 61 199 598
DJF MAM JJA SON YEAR DJF MAM I JJA SON YEAR
180 4 ME : : 1804 g¢ :
160 - - : : 160 91— :
= 140 : : 140 - ;
7 :'—,' 120 | - E : 120 4 :
< 100 4 : : 100 4 :
Example @™ ggp- - S { 80 - - :
& 60+ e : : o e 60 | = o .
T 40 - . O & & 4 : 04 e : o ®e .
= | (Ogee : : e : ® ] sie GQ . Dg " ® *F
g2 204 & Ro - : e 204 = = 8
2 0 : & ? S %& : 590_6 — % 04— ) : o EQO 8 - .
T 20 - L : g - o 20 4 :
40 - -
60 - 171 160 Wet bias domlnates
DJF MAM I
ngher resolutlon typlcally assocnated wnth hlgher precip.
® CLMCOM-11 @ CSC-11 Moo S asanae & D - omn e | INSLMEDIS 41 & onn o PN |
O cuioomds O cse lndlwdual outllers beyond ENSEMBLES range

Biases often located in undercatch range



® EUR-11

114 Ea 1.1 O EUR-44
1 ® 1 ®
. . . e el S BLY ey =
S 094 %05?05 e,\%#-t %B'; el ©.5 99 B o=
T 08 e o — og 0.8 o‘ e ®ge
S 07- b 0.7 - . o 3
5 & S ' d Y
S 06 - o 06 c
S 05 o 0.5 -
S 04 - 0.4
@®©
3 03 d 0.3
£ g2 - 0.2
0.1 - 0.1
0 - _
! I | ! I I 0 [ I ! | |
DJF MAM JJA SON YEAR DJF MAM JJA SON YEAR
1 Qi.‘ ® % - @ . 5a%0 3
7 s 097 55_0 &3 & o M 8 &8 O 0.9 %%o e % e,
Example = 08 ?eQ: © ® 9] 5e . 0.8 - = Q.)? C.)
© 07 - p 2 0.7
8 0.6 O @ O 0.6
T 05 - 0.5
>
S 04 - 0.4
S 03+ 6:3
Q
€ 02+ 6:2
0.1 o
0 Winter correlations high, summer correlations partly < 0.6
! DJF ! MAM I J.Ja SNN YFAR nic RAARA in (STalN] vEAD

Correlations close to 1 for CNRM

Higher resolution not beneficial



INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIEN o

ETHzurich —

@® EUR-M
192 : ; ; ; ; ; ; _ O EUR-44
' © 022 - 044 © 016 - 013 : 021 : 0.18 : 037 - 0.31\
1 ﬁ j j j = j j
o L e R T N Ze N
- 0.8 — O :é : O. . e O 8 : SD of mean annual
O . ® Z Z Z Z ' Z R — cycle divided by
O 0.6 — o Z i .*-\’ i Q% : . annual mean
g 0.4 — ® e m OQ o : O. monthly precipitation
: . . . L . . QO .
o 02— i O i ? i — 0O
- : - - o° ' ' 0
= 07 -
o ] O
7 'O -0.2 j
Example E _04 -
a.
0.6 — Q
-0.8 4 : : : : : : :
| Bl ! IP | FR | ME | SC | AL | MD ! EA |
Good reproduction of mean annual cycle in IP, SC, MD
® CLMCOM-11 ® CsC-11 ® SMHI-11 ® KNMI-11 ® DMI-1 @® CNRM-11 @ IPSL-INERIS-11 CRP-GL-11 UHOH-11 |
Ocwcowi Ccsew = O poor performance in FR, ME, AL

But: Iatter regions show a weak annual cycle only
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Normalised Standard Deviation

Normalised Standard Deviation

25

2.0

1.5

25

20

15

o
[N
o
w
25

Temporal
Correlation

0.7

Normalised Standard Deviation

0.99

2.0 25
0.2
03 &
Temporal
Correlation
0.6 o
™~
0.7 5
k!
>
[
2
T <
@
=}
c
e}
n
L) o
o R
]
0.95 E
(=}
Z u
[=]

T T
0.5 1.0 1.5 2.0

Summer inter-annual variability mostly overestimated

® EUR-1MDJF O EUR-44T '™

Acr11ua AerR4. Reduced blases of outllers wrt ENSEMBLES

2.0

1.5

0.7

Temporal
Correlation

0.99

Better corr

elatlon

csi

in wmter than in summer

0.7

2.0

Temporal
Correlation

2.5
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Example
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Evaluation...

... confirms the ability of current RCMs to represent to
of the European climate under perfect boundary

conditions

... highlights for selected metrics, seasons and
regions and a for an identical forcing
... reveals found in majority of experiments

(e.g., predominant wet and cold bias over most parts of Europe, warm
and dry summer bias in Southern Europe)

... indicates progress wrt. ENSEMBLES for a few aspects (e.g. reduced
warm summer bias over Southern Europe), but

... does at
the temporal and spatial scales considered
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SUMMARY

— — },a-"
s

& CONCLUSIONS

(Regional) Climate model evaluation as an important
compohnent of model development and application

Important to provide trust into models and their
scenarios

Infinite number of evaluation schemes!

Choice of scheme can strongly determine final
outcome

RCM evaluation ALWAYS has a subjective
component

Large number of issues to consider during evaluation
exercise and interpretation of results
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SUMMARY & CONCLUSIONS (cont'd)

NOTE!

¢ Skill in the present does not imply skill in
the future

® But: A model has to reflect the behaviour of
the real system in order to be suitable for
scenario development (minimum
requirement)

Conclusions



OUTI.OOK. CI.OUD-RESOI.VING SCENARIOS

Spatial resolution of regional climate scenarios limited by
available computing power
(currently 10-50 km for larger ensembles).

Cloud-resolving scenarios at the kilometer-scale now
becoming more and more feasible.

8

Summary &
Conclusions

These scenarios can to some extent explicitly resolve
moist convection and convection parameterizations can
at least partly be switched off.
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OUTLOOK: CLOUD-RESOLVING SCENARIOS (cont'd)

orography CCLM 2.2 km [m], 1542x1542

i W

8

Summary &
Conclusions
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Summary &
Conclusions
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K: CLOUD-RESOLVING SCENARIOS (cont'd)

Added value of cloud resolving simulations to be expected in many cases:

Diurnal cycle of summer convection (Hohenegger et al. 2008)
Soil moisture — precipitation feedback (Froidevaux et al. 2014)

Spatial precipitation patterns, precipitation extremes (Prein et al. 2014, Kendon
et al. 2014, Ban et al. 2014

Evaluation (!): Sub-daily precipitation statistics Switzerland (1998-2007)

Frequency [fraction of days]

Hourly max. precipitation
(cumulative frequency)

0.4 | | | { === CcosMo-CLM 12 km
COSMO-CLM 2.2 km

0.2 observations (24 stations)

0.1
005! European-scale simulations

' extremely expensive, but simula-
0.02! tions for smaller domains (e.g., Banetal.
2014) and prototype versions for

0.01 European domains already available

1 5 10 15 20 (Leutwyler et al., in prep)
mm/h Banetal.. 2014




B e S
INSTITUTE FOR ATMOSPHERIC AND (’:LI:IMATE’SQE&CE - .‘S"'—"‘—.'_.__

ETH-rich

8

Summary &
Conclusions

. i o e B
o L g - g™ - o
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Kotlarski et al., Geosci. Model Dev., 2014

Boberg and Christensen, Nature Clim. Change, 2012




e e
INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE.

i _ CIER
ETHzurich — i

~ -
- —\
.327‘; o ()

Email: sven.kotlarski@env.ethz.ch

THANK YOU FOR LISTENING!



=
INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE

ETH:zurich e



	VALIDATION OF�REGIONAL CLIMATE MODELS
	Slide Number 2
	OUTLINE
	OUTLINE
	OUTLINE
	GCM OROGRAPHY     HadGEM2-ES, 1.875° x 1.25°, approx. 140 km
	Slide Number 7
	GCM OROGRAPHY     HadGEM2-ES, 1.875° x 1.25°, approx. 140 km
	VARIABLE-RESOLUTION GLOBAL CLIMATE MODEL
	GCM OROGRAPHY     HadGEM2-ES, 1.875° x 1.25°, approx. 140 km
	EMPIRICAL-STATISTICAL DOWNSCALING  (classical view)
	REGIONAL CLIMATE MODELLING
	RE-ANALYSES: BASICS
	RE-ANALYSES: PURPOSE
	MODEL COMPONENTS
	PROS & CONS
	THE ADDED VALUE
	TYPES OF RCM EXPERIMENTS
	THE UNCERTAINTY CASCADE
	CLIMATE MODEL ENSEMBLES
	THE ENSEMBLES PROJECT
	CORDEX
	EURO-CORDEX
	ENSEMBLES vs. EURO-CORDEX
	OUTLINE
	Slide Number 26
	WHY RCM EVALUATION?
	WHY RCM EVALUATION?  (cont’d)
	WHY RCM EVALUATION?  (cont’d)
	WHY RCM EVALUATION?  (cont’d)
	RCM VERSUS SD EVALUATION
	OUTLINE
	TYPES OF RCM EXPERIMENTS
	TYPES OF EVALUATION
	THE REFERENCE
	SCALE MISMATCH
	SCALE MISMATCH
	SCALE MISMATCH  (cont’d)
	GRIDDED REFERENCE DATA
	EXCEPTION: SINGLE-COLUMN MODES
	GRIDDED REFERENCE DATA
	THE E-OBS GRIDDED DATASET
	THE E-OBS GRIDDED DATASET  (cont’d)
	OUTLINE
	SCOPE
	METRIC SELECTION
	METRIC SELECTION  (cont’d)
	METRIC SELECTION  (cont’d)
	GENERIC AND APPLICATION-SPECIFIC ASPECTS
	EXAMPLE 1: THE VALUE VALIDATION FRAMEWORK
	EXAMPLE 2: EURO-CORDEX STANDARD EVALUATION
	EXAMPLE 2: EURO-CORDEX STANDARD EVALUATION
	EXAMPLE 2: EURO-CORDEX STANDARD EVALUATION
	THE TAYLOR DIAGRAMS
	TAYLOR DIAGRAM: EXAMPLE
	EXAMPLE 3: MULTIVARIATE SCORE
	VALIDATION OF TRENDS
	OUTLINE
	Slide Number 59
	THE ROLE OF MODEL CALIBRATION
	1st EXAMPLE: MODEL CALIBRATION
	1st EXAMPLE: MODEL CALIBRATION  (cont’d)
	1st EXAMPLE: MODEL CALIBRATION  (cont’d)
	2nd EXAMPLE: MODEL CALIBRATION
	2nd EXAMPLE: MODEL CALIBRATION  (cont’d)
	2nd EXAMPLE: MODEL CALIBRATION  (cont’d)
	2nd EXAMPLE: MODEL CALIBRATION  (cont’d)
	2nd EXAMPLE: MODEL CALIBRATION  (cont’d)
	2nd EXAMPLE: MODEL CALIBRATION  (cont’d)
	2nd EXAMPLE: MODEL CALIBRATION  (cont’d)
	2nd EXAMPLE: MODEL CALIBRATION  (cont’d)
	SUMMARY: EFFECT OF MODEL CALIBRATION
	Slide Number 73
	INTERNAL CLIMATE VARIABILITY
	THE «CLM CONSORTIAL RUNS»
	IV IN REGIONAL CLIMATE SIMULATIONS
	EXAMPLE: INFLUENCE OF IV ON 10-YEAR RCM CLIMATE
	EXAMPLE: INFLUENCE OF IV ON 42-YEAR RCM CLIMATE
	YESTERDAY MORNING…
	Slide Number 80
	TYPES OF RCM EXPERIMENTS
	REALIZATIONS OF THE SAME CLIMATE
	TYPES OF RCM EXPERIMENTS
	MEAN ANNUAL TEMPERATURE  (OBS. AND ERA40-driven RCMs)
	MEAN ANNUAL PRECIPITATION  (OBS. AND ERA40-driven RCMs)
	LIMITATIONS OF EVENT-WISE VALIDATION
	FORECAST-MODE AND NUDGING
	Slide Number 88
	OBSERVATIONAL UNCERTAINTY - OVERVIEW
	OBSERVATIONAL UNCERTAINTY - ORIGINS
	MEASUREMENT ERRORS: PRECIPITATION
	TEMPORAL AND SPATIAL INHOMOGENEITIES
	TEMPORAL AND SPATIAL INHOMOGENEITIES  (cont’d)
	TEMPORAL AND SPATIAL INHOMOGENEITIES  (cont’d)
	INFLUENCE ON MODEL EVALUATION
	INFLUENCE ON MODEL EVALUATION
	SYSTEMATIC TOPOGRAPHIC EFFECTS
	SYSTEMATIC TOPOGRAPHIC EFFECTS  (cont’d)
	Slide Number 99
	OVERVIEW
	Slide Number 101
	TEMPERATURE DEPENDENCY OF RCM BIAS
	EVALUATION vs. CLIMATE CHANGE SIGNAL
	EVALUATION vs. CLIMATE CHANGE SIGNAL  (cont’d)
	PSEUDO REALITIES
	Slide Number 106
	PHYSICAL RELATIONS
	Slide Number 108
	OUTLINE
	MODEL WEIGHTING: RATIONALE
	MODEL WEIGHTING: RISKS
	THE ENSEMBLES WEIGHTING SPECIAL ISSUE: OVERVIEW
	THE ENSEMBLES WEIGHTING SPECIAL ISSUE: METRICS
	THE ENSEMBLES WEIGHTING SPECIAL ISSUE: COMBINATION
	THE ENSEMBLES WEIGHTING SPECIAL ISSUE: RESULTS
	THE ENSEMBLES WEIGHTING SPECIAL ISSUE: RESULTS
	THE ENSEMBLES WEIGHTING SPECIAL ISSUE: CONCLUSIONS
	OUTLINE
	VALIDATION EXAMPLE
	OBJECTIVES
	SCOPE
	DATA AND METHODS
	DATA AND METHODS  (cont’d)
	EVALUATION METRICS
	WINTER (DJF) TEMPERATURE BIAS  mean 1989-2008, EUR-11
	SUMMER (JJA) TEMPERATURE BIAS mean 1989-2008, EUR-11
	SUMMER (JJA) PRECIPITATION BIAS  mean 1989-2008, EUR-11
	EXPLANATION OF OVERVIEW FIGURES
	TEMPERATURE: Regional and temporal mean bias  [K]
	PRECIPITATION: Regional and temporal mean bias  [%]
	TEMPERATURE: Inter-annual correlation
	PRECIPITATION: Rank correlation of mean annual cycle
	TEMPERATURE: TEMPORAL TAYLOR DIAGRAMS
	SUMMARY: EURO-CORDEX STANDARD EVALUATION
	OUTLINE
	SUMMARY & CONCLUSIONS
	SUMMARY & CONCLUSIONS  (cont’d)
	OUTLOOK: CLOUD-RESOLVING SCENARIOS
	OUTLOOK: CLOUD-RESOLVING SCENARIOS  (cont’d)
	OUTLOOK: CLOUD-RESOLVING SCENARIOS  (cont’d)
	FURTHER LITERATURE…
	Slide Number 142
	Slide Number 143

