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Early history

within numerical weather prediction
since ~ 1960’s

relatively successful prediction of upper-level
flow

but less successful prediction of surface weather
(temperature, precip, ...)

statistics helps

surface weather derived from large-scale
circulation

‘specification’: pioneering work by W.H. Klein

W.H. Klein — ‘grandfather’ of statistical
downscaling



Less early history

history repeated in 1980’s within
climatology

models = GCMs = General Circulation
Models at those times (not Global Climate
Models)

models able to simulate large-scale flow

models not able to simulate surface small-
scale features

this issue persists until today




Less early history

* first attempt to bridge the gap between
large-scale and small-scale (local) climate

OcToBer 1984 KIM, CHANG, BAKER, WILKS AND GATES

The Statistical Problem of Climate Inversion: Determination of the Relationship
between Local and Large-Scale Climate

J-W. KiM,' J.-T. CHANG,2 N. L. BAKER,’ D. S. WILKS AND W. L. GATES
Department of Atmaospheric Sciences and Climatic Research Institute, Oregon State University, Corvallis, OR 97331
(Manuseript received 12 August 1981, in final form 9 July 1984)

ABSTRACT

The estimation of the most probable local or mesoscale distribution of a climatic variable when only the
large-scale value is given may be viewed as a sort of climate inversion problem. As an initial statistical study
of this question, the monthly-averaged surface temperature and monthly total precipitation for stations in
Oregon are analyzed for the purpose of relating their most probable mesoscale distributions to the large-scale
maonthly anomalies.

The first empirical orthogonal mode of the covanance matrix of mesoscale transient departures explains
78.2 and 80.8% of the total vanance of terperature and precipitation, respectively, The time structure of the
first mode is predomiinantly seasonal and is in phase with the large-scale anomalies, and the correlation
cocficient between this oscillation and the large-scale anomaly 15 0.96 for temperature and 095 for
precipitation. The most probable mesoscale distribution as specified by only the first empirical orthogonal
function is predictable with relative error of less than 37 9% for temperature and 37.1% for precipitation if
the corresponding large-scale anomaly is known with an error of less than 10%. These results may be useful
in the study of local climatic impacts with larpe-scale climate models,
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« statistical relationships between large-scale and

local temperature & precipitation
» procedure called ‘climate inversion’

 this term has not been used later any more
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More recent history

next attempts

— Wilks: Statistical specification of local surface weather elements
from large-scale information. Theor Appl. Climatol., 1989

— Karl et al.: A method of relating general circulation model
simulated climate to the observed local climate. Part |: Seasonal
statistics. J. Climate, 1990 (Part Il never appeared)

term ‘downscaling’ still not used

| thought I'd find who coined the term ‘downscaling’ (who
IS its father / mother) and where ... but was not
successful

term ‘downscaling’ is not used even in the very influential
review paper by Giorgi & Mearns (Approaches to the
simulation of regional climate change: A review. Rev.
Geophys., 1991)

(at the same time, first attempts to run regional models
beyond their predictability limits by Dickinson and Giorgi
— dawn of regional climate models)



Current state

what is considered ‘statistical downscaling’ (or ‘empirical
downscaling’) today?

broader meaning than 10 years ago

not only statistical relation between large-scale and small-scale
(local) surface variables

also

— stochastic generators

— MOS-like approaches

— tools to correct statistical distributions (‘bias-correction’)

under ‘downscaling’ it is frequently understood ‘tools for providing
local climate (change) information,’ regardless of the spatial (or even
temporal) scales

but — such a ‘dynamic’ use of terminology may (and does) cause
confusion and misunderstandings

let’s stick to a ‘classical’ statistical downscaling



Paradox of statistical
downscaling

Models are typically fitted to variability
on time scales much shorter (daily)
than on which climatic change
proceeds (decades)

@ g— Q Q Q ! corr = 0.95




Paradox of statistical
downscaling

* one clear fact: degree of fit with observed
data (whatever measure is used) cannot
be the only criterion of which DS model to
use

corr = 0.95




Paradox of statistical
downscaling

illustration: oldish example from Huth, J. Climate
2004

various simple (linear) SDS methods

— with different settings (no. of predictors, PCs, CC
pairs, ...)

— with different predictor sets

application to one GCM, one emission scenario

39 stations in central Europe

temperature, winter (DJF)

... don’t think that more sophisticated methods
would behave better!
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* not only amplitude of temperature

change differs

 also spatial patterns

s e) POINTWISE REGR., Z5+T8
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* not only amplitude of temperature
change differs

* also elevation dependence
d) Z5+T8; CCA
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all models are good In
terms of fit to observations
(e.g. rmse)

mean temperature change
varies from +0.5 to +8.5 °C

other aspects also vary
widely

so how to decide which
model to prefer???

Indeed, ensemble
approach would help, but
wouldn’t the range of
values be too wide?



Remedy to the paradox

* possible REMEDY — 2 ways:

— validation: use appropriate criteria
(motivation for my talk on validaton of
temporal aspects)

— a priori selection of predictors (outside of
our current topic)



Remedy - validation

* validate trends (but recent and future
trends may result from different
mechanisms!)

* check ability to simulate contrasting
climatic states (cold / warm; dry / wet
years) (similar objection)

» verify consistency with driving GCM (but
GCM may be wrong! — or at least have
large systematic biases)



Statistical vs. dynamical
downscaling

» statistical downscaling — tendency to be
viewed as inferior, simplistic

— (example — ENSEMBLES project, CORDEX
initiative where it was/is an appendix of RCM
efforts)

* put: the few comparison studies =
statist. and dynam. downscaling have
similar performance



Example: reproduction of
observed time series

 RCMs nested in reanalysis
 SDS models driven by reanalysis
« what would you expect to be better?
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Temperature skewness
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JJA

Precipitation: Spearman correlation coefficient
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Statistical vs. dynamical
downscaling

» + of downscaling:
— computationally simple
— provides local information

* + of RCMs:
— physical consistency among variables



Statistical vs. dynamical
downscaling

* not competing, but complementary
techniques

* both have weak points that are
frequently
— not admitted
— not reconciled



