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What? 

•  point-to-point spatial dependencies 
– spatial autocorrelation 

•  regions of similar temporal behaviour 
–  temporal behaviour: e.g. 

•  full time series (daily, monthly) 
•  annual cycle 

–  tools 
•  cluster analysis 
•  principal component analysis 



Why? 

•  important for various impact sectors 
– hydrology 
– ecology 
– … 



Spatial autocorrelation 

•  correlations with values at a single site 
(station, gridpoint) 

•  mapped 
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Spatial autocorrelation 
•  many autocorrelation maps è need to aggregate 

information 
•  autocorrelation vs. distance plot (dots) 
•  with logarithmic fit overlaid (lines) 
•  another level of aggregation è single number:  

autocorrelation distance 



solid – Tmax 
dashed – Tmin 



Spatial autocorrelation – 
precip occurrence 

•  binary variable 
•  Heidke “skill” score is used as a measure of 

binary correlation 
•  HSS = 2(ad-bc)/[(a+c)(c+d) + (a+b)(b+d)] 

•  attains values from -∞ to +1 (perfect forecast) 
•  here, not in the context of forecasting 
•  “observation” = value at the reference site 
•  “forecast” = value at the other (target) site 
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spatial autocorrelation of precip occurrence – 
Heidke score 
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Spatial autocorrelation – precip 
amount 

•  precip – highly non-Gaussian è non-
parametric correlation measure to be used 
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Tmean, DJF, various SDS methods 





Regionalization 
•  goal – dividing area into regions with 

homogeneous (temporal) behaviour 
•  as usual with climate, there are no clearly 

separated regions 
•  no ‘correct’ solution to this task 
•  useful tool, nevertheless 
•  two (groups of) techniques 

–  cluster analysis 
–  principal component analysis 



Regionalization 
•  different partitions (results of 

regionalization) obtained for 
–  different normalizations of data  

•  raw data, anomalies (from what?), standardized 
data 

•  i.e., if we are interested in absolute values, 
deviations from long-term mean, deviations from 
areal average, … 

–  different variables to cluster 
•  daily time series 
•  annual cycle 



Regionalization 

•  comparison of partitions reality vs. 
model 
– by eye (if not too many sites) 
– contingency tables à several indices to 

quantify the correspondence 
•  Rand, adjusted Rand, Jaccard, … 



Cluster analysis 
•  hierarchical vs. non-hierarchical 

techniques 
•  hierarchical 

–  succession of partitions 
–  tree diagram (dendrogram) 
–  no. of clusters (regions) to be determined by 

an ‘experienced eye’ of the researcher from 
the tree diagram 

•  non-hierarchical 
–  no. of clusters to be determined prior to 

analysis 



Principal component analysis 
•  S-mode  

–  most common arrangement of input matrix 
–  sites (stations, gridpoint) in columns 
–  time (days, months, …) in rows 

•  choice of similarity matrix (correlation, covariance, …) has a 
strong effect on results 

•  results must typically be rotated in order to get regionalization 
•  rotation = mathematical transformation of a subset of relevant 

(not noise) components 
•  no. of retained relevant components = no. of regions 
•  output from PCA:  

–  eigenvalues (‘strength’ or ‘importance’ of components) 
–  loadings (weights) – maps  
–  scores (amplitudes) – time series 

•  every site assigned to the component (region) on which it has 
the highest loading 



Example of regionalization 

•  regionalization based on PCA (correlation matrix, obliquely 
rotated) 



Climate classification 

•  specific way to assess spatial 
characteristics of model outputs, 
together with inter-variable consistency 

•  usually used to validate GCMs 
•  suitable to compact description of future 

climate changes 
•  classifications used for this purpose 

– Köppen-Geiger-Trewartha 
– Thornthwaite 



•  Thornthwaite 
climate types 

•  OBS (top) 
•  CMIP5 ensemble 

for recent climate  
(bottom) 

•  Elguindi et al., 
Clim. Change 2014 



•  Köppen climate 
types 

•  Kalvová et al., 
Studia Geophys. 
Geod. 2003 





A sort of conclusions… 
•  a wide variety of validation criteria  
•  criteria driven by 

–  model developers 
–  model users (end-users) 

•  studies comparing performance of a wide range of 
DS methods (e.g., RCMs with SDS models) are 
rather scarce 

•  performance of different DS methods is 
comparable – none can be seen as ‘best’ or 
‘worst’ 

•  model good in one aspect may fail in another 
aspect 

•  impossible to rectify all the aspects of downscaled 
variables at the same time 


