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What is it?

 validation in the temporal domain
 validation of temporal behaviour

2 different issues fall here
— short-term (day-to-day) variability
— long-term variations (trends)



Why is it important?

* short-term variabillity
— many impact sectors (models) are sensitive to
it
* agriculture
* hydrology

 long-term variations (trends)
— key property in relation to climate change



Short-term variability

* various aspects

— temperature (and some other variables)
 persistence (temporal autocorrelations)
» day-to-day changes (variations) — empirical distributions
« extended extreme events (heat waves, cold spells)

— precipitation
» separate evaluation of

— precipitation occurrence / non-occurrence (binary variable)
— precipitation amounts (continuous variable)

» wet / dry periods
* transition probabilities (wet->wet, dry->wet)
» “binary persistence” — quantifiable e.g. by Heidke “skill” score

* not much sense in examining temporal properties of
precipitation amounts — perhaps only in very wet climates



Short-term variability

Issue that must be considered: grid box vs.
stations

gridbox (gridpoint) representation (whether in
RCM or gridded observations) may not truly
represent station characteristics of temporal
behaviour and extremes

(smoothing effect)
must be kept in mind when interpreting results

e.g. Osborn & Hulme: Development of a
relationship between station and grid-box
rainday frequencies for climate model
evaluation, J. Climate 1997



Examples

four examples to illustrate validation of short-term variability

Huth et al., J. Climate 2001
— 6 stations in central Europe
— SDS
 linear regression
 different ways of accounting for missing variance
— 2 variants of weather generator

— 2 GCMs

Huth, J. Climate 2002
— 39 stations in central & western Europe

— various linear SDS methods (MLR, CCA, SVD, ...) with various combinations of
predictor fields

Huth et al., Int. J. Climatol., 2008

— 8 stations in Europe
— linear & nonlinear SDS methods

Huth et al., Theor. Appl. Climatol. 2014

— dense network (stations & grid) in central Europe (CZ, AT, HU, SK borders)
— SDS

* linear regression

* 4 non-linear methods (analogs, local linear models, 2 neural networks)
— 2 RCMs

* ALADIN-Climate/CZ — 10 km grid

* Reg CM3 — 25 km grid



Persistence

lag-1 day autocorrelation

simple, important, but only rarely
evaluated

note: does not account for the magnitude
of day-to-day variability

note: post-processing (bias correction)
methods cannot affect it



persistence, DJF, Tmean

TABLE 7. Lag-1 autocorrelations (X 1000) averaged over all stations
for different downscaling methods (persistence) and their difference
from observations (bias).

Method Persistence Bias
Observed 863 -
Pointwise regression, inflation 855 —8
Pointwise regression, white noise 656 —207
Full regression, 3 PCs 939 +76
Full regression, 5 PCs 939 +76
Full regression, 7 PCs 922 +59
Full regression, 11 PCs 909 +46
CCA, 3/9 PCs. 3 modes 889 +26
CCA. 5/9 PCs. 3 modes 889 +26
CCA., 7/9 PCs. 4 modes 884 +21
CCA. 11/9 PCs, 4 modes 883 +20
CCA. 11/4 PCs, 4 modes 899 +36
CCA, 11/7 PCs, 4 modes 905 +42
CCA. 11/9 PCs, 4 modes 883 +20
CCA, 11/9 PCs, 1 mode 885 +22
CCA. 11/9 PCs, 2 modes 875 +12
CCA. 11/9 PCs, 3 modes 888 +25
CCA., 11/9 PCs, 4 modes 883 +20
CCA. 11/9 PCs, 5 modes 904 +41
CCA., 11/9 PCs, 6 modes 900 +37
CCA. 11/9 PCs, 7 modes 8908 +35




persistence, DJF, Tmax

Table VIII. One day lag autocorrelations (x 1000) for maximum temperature. Values within +/—0.040 from the observations are
in bold; values below (above) this range are in italics (in light print). In the last column, the mean absolute error of the 1-day
lag correlations (x1000) is shown for selected models.

Soda Zugs Sala Bamb Hohe Vale Smol Prag MAE
Observed 717 737 737 825 778 707 810 850 0.0
Pointwise regr. 748 793 769 822 804 746 795 827 28.1
4 PCs regr. 920 921 914 928 925 927 923 931 -
12 PCs regr. 902 896 888 922 903 904 904 921 -
20 PCs regr. 846 855 891 887 859 846 898 892 -
NN pointwise 825 855 756 796 783 767 840 838 47.6
NN 20 PCs 837 - 855 - 835 - - 869 -
T-mode, Z5, 4 cl. 736 782 737 781 786 730 750 786 32.9
T-mode, Z5, 11 cl. 672 761 605 698 764 689 712 709 -
T-mode, Z5, 18 cl. 653 749 558 641 743 662 660 666 -
T-mode, Z0, 4 cl. 730 790 727 777 795 731 764 765 37.0
k-means, Z5, 4 cl. 730 780 721 779 789 712 781 786 284

k-means, Z0, 4 cl. 744 784 721 766 795 713 768 778 35.7




Tmax, 1-day lag persistence, whole year
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Tmax, 1-day lag persistence, whole year
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Tmax, 1-day lag persistence, whole year
difference from OBS, x100
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Tmin+Tmax JJA
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Day-to-day changes

different aspect of short-term variability

time series with identical persistence may have
very different distributions of day-to-day changes

characteristics of statistical distribution
(histogram) of day-to-day changes are
evaluated, namely

— standard deviation

— skewness (asymmetry)

reflects the ability of models to include (and
correctly simulate) various physical processes
(radiation, advection, ...)
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day-to-day max.temperature change, summer
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Fic. 7. Histograms of day-te-day change In maximum temperature in summer (binned into 1°C intervals) at StriZnice for selected time
series. On the horizontal axis is temperature difference in degrees Celsius, on the vertical axis is frequency in percent. See Table 1 for
defimitions of time series.
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day-to-day min.temperature change, winter
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Extended extreme events

important characteristics of extreme weather
potentially big difference if extremes occur individually or in
sequences
examples

— heat waves

— cold spells
typical definition — periods of a certain minimum duration with
temperature exceeding a threshold (absolute or percentile-based)

integral characteristic — integrates different aspects o temperature
(extremes, persistence, annual cycle, ...)

possible characteristics to validate

— frequency

— duration

— percentage of extreme days included in extended events (reflects
mainly persistence)

— intensity (highest temperature or highest temperature exceedance over
threshold during the event)

— date of occurrence (reflects the ability to simulate annual cycle)



heat waves, cold spells
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heat waves, cold spells
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FIG. 12. Mean date of start of (a) heat waves and (b) cold waves.

Numbers on the ordinate indicate the number of days from the be-
ginning of Jul and Jan, respectively: e.g.. for HWs 20 means 20 Jul.

Otherwise as in Fig. 10.
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heat waves

« Vautard et al., Clim. Dyn. 2013
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Fig. 5 a, b Average observed number of heat wave events of
duration larger than a given number of days, as a function of this
number of days (heavy black decreasing curve). The average is
performed over the ECA&D stations lying in the [20 W, 40E: 30 N,
70 N] domain. The figure also shows the ratio of the number of
simulated to observed events for each model (other curves with model
legend given in the graph itself). To improve readability the ensemble

is split into two sub-ensembles: non-WRF simulations (a) and WRF
simulations (b). ¢, d Same as a, b for the frequency of days (instead of
number of events) in spells with durations larger or equal to the value
in abscissa (instead of the number of events). High-resolution
simulations are highlighted with dashed lines and have the same
color as the low-resolution simulations




Precipitation transition
probabilities: dry-wet, wet-wet
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Number of uninterrupted periods of wet days 1 to 10 days long. Shown are
the median value in the set of grid points in the validation domain (bold line),
the interquartile range (darker shading) and min-max range (lighter
shading).



Trends (long-term variations)

* long-term variations — essential for climate change
assessment, impacts etc.

* if a model is not able to simulate current trends, how can
we rely on it for future climate change?

* in spite of it, trend validation studies are scarce
 models time series must correspond to real time series

* I.e., applicable only if model is driven by observed data
(typically represented by reanalysis)
— RCM nested in reanalysis
— SDS model trained on reanalysis
— GCM nudged towards reanalysis (very rarely done so far)

« two possible approaches
— trends as (usually) linear regression fits — variable vs. time
— differences for contrasting periods (warm vs. cold; wet vs. dry)



Trends (long-term variations)

three examples

all for temperature
Lorenz & Jacob, Clim. Res. 2010

— 8 European domains
— 13 RCMs driven by ERA40
— ENSEMBLES project

Bukovsky, J. Climate 2012
— North America

— 6 RCMs driven by NCEP-2
— NARCCAP programme

Huth et al., Theor. Appl. Climatol. 2014
— central Europe

— 2 RCMs driven by ERA40

— 5 SDS models trained on ERA40

— CECILIA project



Fig. 1. Eight European sub-regions defined within the PRUDENCE project
after Rockel (figure originally appeared in Christensen & Christensen
2007). 1: Bnitish Isles (BI), 2: Iberian Peninsula (IP), 3: France (Fr), 4: Mid-
Europe (ME), 5: Scandinavia (Sc), 6: Alps (Al), 7: Mediterranean (Md), 8:
Eastern Europe (EE)
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* note discrepancies between observed data / reanalyses
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* note discrepancies between observed data / reanalyses
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* trends (in °C / decade)
 DJF




* trends (in °C / decade)
« JJA

North American
“warming hole” \




TABLE 1. Percentage of domain with trends that are statistically

different from those in CRU.

DJF MAM JTA SON
CRCM 10.69 8.86 26.89 18.78
ECP2 12.10 12.69 26.68 15.69
HRM3 25.92 51.07 59.08 23.22
MMS5I 26.66 36.12 53.25 19.08
RCM3 7.31 7.02 40.52 34.00
WRFG 11.14 30.69 49.98 32.01
NCEP-2 11.26 23.82 46.06 19.45
UDEL 11.21 12.71 28.15 14.37

not a great success, is it ...

where do the differences from reality come from?
— problems inside the models

— imprecise reference climate data (trends differ between
databases / reanalyses)

— problems in the driving reanalyses (e.g. presence of artificial
trends in upper level fields)

— sampling variations
difficult to distringuish model errors from other potential
error sources



