Superconducting qubits for analogue quantum simulation

Gerhard Kirchmair

Workshop on Quantum Science and Quantum Technologies
ICTP Trieste

September 13th 2017
Experiments in Innsbruck on cQED

Quantum Simulation using cQED

\[|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle \]

\[\sqrt{2} \]

Quantum Magnetomechanic

Josephson Junction array resonators
Outline

• Introduction to Circuit QED
 – Cavities
 – Qubits
 – Coupling

• Analog quantum simulation of spin models
 – 3D Transmons as Spins
 – Simulating dipolar quantum magnetism
 – First experiments
cavity QED \rightarrow circuit QED

optical photons \downarrow

microwave photons

optical resonators \downarrow

microwave resonators

atoms as two level systems \downarrow

nonlinear quantum circuits

QIP, quantum optics, quantum measurement...

Many groups around the world:
Yale University, UC Santa Barbara, ETH Zurich, TU Delft, Princeton, University of Chicago, Chalmers, Saclay, KIT Karlsruhe...
Cavities
Waveguide microwave resonator

\[\lambda/2 \]

Observed Q's > 10^6

Quantum Circuits

Around a resonance:

$$\hat{\Phi} \leftarrow L \quad C \rightarrow \hat{Q}$$

$$H = \frac{\hat{Q}^2}{2C} + \frac{\hat{\Phi}^2}{2L}$$

$$\hat{Q} = \sqrt{\frac{\hbar}{2Z_0}} (a + a^\dagger) \quad \hat{\Phi} = i \sqrt{\frac{\hbar Z_0}{2}} (a - a^\dagger)$$

Quantum Harmonic Oscillator

$$H = \hbar \omega_0 \left(a^\dagger a + \frac{1}{2} \right)$$

Classical drive

Energy

Energy levels:

$$|0\rangle \rightarrow |1\rangle \rightarrow |2\rangle$$

Resonance conditions:

$$Z_0 = \sqrt{\frac{L}{C}} \rightarrow 1 \ldots 100 \, \Omega$$

$$\omega_0 = \sqrt{\frac{1}{LC}} \rightarrow 4 \ldots 10 \, GHz$$
Qubits – 3D Transmon
Josephson Junction

\[\hat{H} = -E_j \cos \phi \]

\[\hat{H} = -E_j \cos \phi + \frac{\hat{Q}^2}{2C} \]
Superconducting Qubits - Transmon

Transmon

\[\hat{H} = -E_j \cos \hat{\phi} + \frac{\hat{Q}^2}{2 C_\Sigma} \]

Energy

Using the same replacement rules as for the Harmonic Oscillator

\[H = \hbar \omega_0 b^\dagger b - \frac{E_c}{2} (b^\dagger b)^2 \]

Koch et al. Phys. Rev. A 76, 042319

\[\omega_0 = 5 - 10 \, GHz \]

\[E_c = 300 \, MHz = \alpha \]
Transmon coupled to a Resonators

\[H = \hbar \frac{\omega_q}{2} \sigma_z + \hbar \omega_r a^+ a \]

\[H_{int} = \hbar g (a^+ \sigma^- + a \sigma^+) \]

\(g = 50 - 250 \text{ MHz} \)

Jaynes Cummings Hamiltonian

\[\downarrow \]

driving, readout, interactions
Transmon - Transmon coupling

Direct capacitive qubit-qubit interaction

\[H_{\text{int}} = \hbar J (\sigma^+ \sigma^- + \sigma^- \sigma^+) \]

\[J = 50 - 250 \, \text{MHz} \]
3D Transmon coupled to a Resonator

Large mode volume compensated by large “Dipolemoment” of the qubit

\[|\vec{d}| = 2e \cdot 1mm \approx 10^7 \text{Debye} \]

Observed Q’s up to 5 M \[T_1, T_2 \leq 100 \mu s \]
Superconducting qubits for analog quantum simulation of spin models

Quantum Simulation

The problem: Simulating interacting quantum many-body systems on a classical computer is very hard.

The approach: Engineer a well controlled system that can be used as a quantum simulator for the system of interest.
The basic idea & some systems of interest...

Spin chain physics

\[|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle \]

\[\frac{\sqrt{2}}{2} \]

2D spin lattice

\[\Psi = ? \]

Open quantum systems

...spins

...interactions
Finite Element modeling - HFSS

Eigenmodes of the system:

Mode frequency (GHz) vs. L_1 (nH)

- Q_1 uncoupled
- Q_1 coupled
- Q_2
- Cavity

$2g$ and $2J$ points highlighted.

Qubit – Qubit interaction

\[J(r, \theta_1, \theta_2) = J_0 d_m^2 \frac{\cos(\theta_1 - \theta_2) - 3 \cos \theta_1 \cos \theta_2}{r^3} + J_{cav} \]
Interaction tunability

- Qubit - Qubit angle and position
 - tailor interactions
- Qubit - Cavity angle
 - tailor readout & driving
 - measure correlations

Spin chain physics

\[|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle = \frac{1}{\sqrt{2}} \]
Scaling the system

- Fine grained readout
- Competition between short range dipole and long range photonic interaction
- Band engineering is possible
- Inbuilt Purcell protection
- Dissipative state engineering

Open quantum systems
To do list – theory input

• How to best **characterize** these systems?

• What do we want to **measure**?

• How do we **verify/validate** our measurements?

• How does it work in the **open system** case?
Simulating dipolar quantum magnetism

Phys. Rev. B 92, 174507 (2015)
Model to simulate

XY model on a ladder: Superfluid and Dimer phase

Analogue Quantum Simulation with Superconducting qubits

\[
H = \sum_{i,j} J \left(\frac{\theta_1, \theta_2}{|r_{i,j}|^3} \right) (S_i^+ S_j^- + \text{h. c.}) + \sum_i h_j S_i^z
\]

In Collaboration with M. Dalmonte & D. Marcos & P. Zoller
Static properties of the model

Order parameter and Bond Correlation

Disorder influence on the Bond Correlation

Bond order parameter shows formation of triplets for $J_2/J_1 = 0.5$

\[
D^\alpha = \left(\sum_{j=1}^{L-1} D_j^\alpha \right)
\]

\[
D_j^\alpha = (-1)^j S_j^\alpha S_{j+1}^\alpha \quad \alpha = x, z
\]

\[
B^z = D_{L/2}^z
\]
Adiabatic state preparation

System size: $L = 6$, $2J_2 = J_1 = 2\pi \cdot 100$ MHz,

Including disorder $\delta h/J_1 = 0.25$
Experimental progress
Experimental progress - Qubits

✓ Single qubit control, frequency tunable

\[T_1 \approx 40 \, \mu s, \; T_2 \leq 25 \, \mu s \]
Experimental progress - Qubits

✓ Multiple qubits and interactions

\[H_{\text{int}} = \hbar J (\sigma^+ \sigma^- + \sigma^- \sigma^+) \]

\[J \approx 70 \text{ MHz} \]
Qubit measurements & state preparation

• During the simulation:
 \[\omega_i = \omega_j \quad \forall \ i, j \]

• We want to measure:
 \[\sigma_i^m \otimes \sigma_j^m \]

• We want to be able to bring excitations into the system

⇒ fast flux tunability necessary
Tuning fields with a Magnetic Hose

- Transport B-field from A to B

Diamagnet: $\mu_r^\perp = 0$

Ferromagnet: $\mu_r^\parallel < \infty$

Long-distance Transfer and Routing of Static Magnetic Fields
Experimental progress - Magnetic Hose

\[T_1 \geq 15 \, \mu s \]

Purcell limited

\[T_2 < 15 \, \mu s \]

depends on flux bias
Experimental progress - Magnetic Hose

- Flux pulse
- \(\pi \) pulse
- Readout

50 ns pulse

Not perfectly compensated

- \(T_{\text{rise}} < 50 \text{ ns} \)
High Q Stripline resonators for waveguides
Experimental progress - Waveguides

Waveguides with resonators and qubits
Conclusion

• Circuit QED

\[C_c \]

\[L_r \]

\[C_q \]

\[C_r \]

\[E_j \]

• 3D Transmons behave like dipoles

• Simulate models on 1D and 2D lattices

• Work in progress
Quantum Circuits Group Innsbruck – April 2017
Quantum Circuits

Around a resonance:

\[H = \frac{\hat{Q}^2}{2 C} + \frac{\hat{\Phi}^2}{2 L} \]

Lagrangian \[\rightarrow \]

\[H = \frac{\hat{p}^2}{2 m} + \frac{m \omega^2 \hat{x}^2}{2} \]

energy in magnetic field \[\leftrightarrow \] potential energy

energy in electric field \[\leftrightarrow \] kinetic energy
Resonators and Cavities

Coplanar Waveguide Resonators

Microwaves in

10 μm

Length ~ λ/2

Ground Plane

out
Why interfaces matter... dirt happens

“participation ratio” = fraction of energy stored in material

even a thin (few nanometer) surface layer
will store ≈ 1/1000 of the energy

If surface loss tangent is poor (\(\tan\delta \approx 10^{-2}\)) would limit \(Q \approx 10^5\)

Increase spacing

\[\text{decreases energy on surfaces} \quad \Rightarrow\]

\[\text{increases } Q\]

as shown in:

Gao et al. 2008 (Caltech)
O’Connell et al. 2008 (UCSB)
Wang et al. 2009 (UCSB)

tech. solution:
Bruno et al. 2015 (Delft)
Circuit model explanation
Josephson Junction

Superconductor (Al)

Insulating barrier

1 nm

Superconductor (Al)

\[|\Psi_A\rangle \quad \text{Superconductor (Al)} \]

\[|\Psi_B\rangle \quad \text{Superconductor (Al)} \]

Josephson relations:

\[I(\varphi) = I_c \sin \varphi \quad \dot{\varphi} = \frac{2e}{\hbar} V(t) \]

Regular inductance

\[V_L = L \dot{I} \]

\[E = \frac{\Phi^2}{2L} \]

Josephson Junction

\[V_{jj} = \frac{\hbar}{2e I_c \cos \varphi} \dot{I} \]

\[E = -E_j \cos(\varphi) \approx E_j \frac{\varphi^2}{2} - E_j \frac{\varphi^4}{12} + \cdots \]

\[\varphi = \frac{2e}{\hbar} \Phi = 2\pi \frac{\Phi}{\Phi_0} \]
Josephson Junction

Junction fabrication:
- thin film deposition
- Shadow bridge technique
Charge Qubit Coherence

- Sweet Spot (Saclay, Yale)
- Charge Echo (NEC)
- Nakamura (NEC)
- Transmon (Yale, ETH)
- 3D Transmon (Yale, IBM, Delft)
- 3D Fluxonium (Yale)
- Improved 3D Transmon (Yale, IBM, Delft)

Kohärenz Zeit (ns)

Operationen

Jahr