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Figure 4: Domain statistics and reconstructed single shot images of 53 spins. (a) Top and bottom: reconstructed
images based on binary detection of spin state (see Appendix E).The top image shows a chain of 53 ions in bright spin states.
The other three images show 53 ions in combinations of bright and dark spin states. Center: statistics of the sizes of domains,
or blocks with spins pointing along the same direction. Histograms are plotted on a logarithmic scale, to visualize the rare
regions with large domains. Dashed lines are fits to exponential functions, which could be expected for infinite-temperature
thermal state. Long tails of deviations are clearly visible, and varies depending on B̃z/J0. (b) Mean of the largest domain sizes
in each single experimental shot. Error bars are the standard deviation of the mean (see Appendix F). Dashed lines represent
a piecewise linear fit, from which we extract the transition point (see text). The green, yellow, and red data points correspond
to the transverse fields shown in the domain statistics data on the left.

The occurrence of long domains of correlated spins in
the state |"ix (fluorescing spins) signifies the fully po-
larized initial state, where the correlations in the initial
state are largely preserved by the interactions. With an
increasing transverse field, the absence of spin-ordering
is reflected by exponentially small probabilities for ob-
serving long strings. We plot the domain length statis-
tics in Fig. 4a at late times (see Appendix F), for three
example transverse field strengths, B̃z/J0 = (0.1, 1.0,
1.6). The dashed lines in Fig. 4a are fits to exponen-
tials on the histogram of domain sizes. The rare occur-
rence of especially large domains (e.g. the red boxes in
Fig. 4a) shows the existence of many-body high-order
correlations, where the order is given by the length of
the domain. We plot the mean of the largest domain size
in Fig. 4b, as a function of the normalized transverse field
strength. The average longest domain size ranges from
12 to 20, and shows a sharp transition across the critical
point of the DPT. We fit this observable to a piecewise
linear function, and extract the critical point to be B̃z/J0

= 0.89(7). For more details, see Appendix F.
The DPT studied here, with up to 53 trapped ion

qubits, is the largest quantum simulation ever performed
with high-e�ciency single shot individual qubit measure-
ments. This gives access to arbitrary many-body corre-
lators that carry information that is di�cult or impossi-
ble to model classically. This experimental platform can
be extended to tackle provably hard quantum problems
such as Ising sampling [36]. Given an even higher level
of control over the interactions between spins, as already
demonstrated for smaller numbers of trapped ion qubits
[37], this same system can be upgraded to a universal
quantum computer.

APPENDIX A: CONFINEMENT OF LONG ION
CHAINS

The ion chain is confined in a 3-layer linear Paul trap
with ⌫cm = 4.85 MHz transverse center-of-mass motional
frequency [30]. The harmonic axial confinement is kept
low enough so that the lowest energy conformation of the
ions is linear; for 8� 16 ions the axial center-of-mass fre-
quency is ⇠ 400 kHz and for 53 ions it is ⇠ 200 kHz. The
ion spacing is anisotropic across the chain, with typical
spacings of 1.5 µm at the center of the chain and 3.5 µm
at either end [38].

The e↵ective lifetime of an ion chain is limited by
Langevin collisions with the residual background gas in
the UHV apparatus [39], which in general re-orders the
crystal but can also melt the crystal and even ultimately
eject the ions from rf-heating or other mechanisms. This
can be mitigated by quickly re-cooling the chain, and
we expect that occasionally the crystal returns without
notice. Rarely, such collisions with the background gas
are inelastic, either populating the 171Yb+ ion in the
metastable F7/2 state or forming a YbH+ molecule. The
355 nm Raman laser quickly returns the ions back to their
atomic ground state manifold, with a small probability
of creating doubly-charged ions. The mean time between
Langevin collisions is expected to be of order 1 collision
per hour per trapped ion, and we expect that the mean
lifetime for a chain of ions might therefore scale inversely
with the number of ions. For 53 ions we observe an av-
erage lifetime of about 5 minutes. However, we observe
rare events where a long ion chain survives for about 30
minutes. We speculate that either the chain is consis-
tently re-captured instantaneously, or the local pressure

C. Monroe
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“At a fundamental level nature obeys the laws of quantum 
physics. At a fundamental level information science must be a 
quantum information science.” 

R. Feynman D. Deutsch



 Information and physics

… perform tasks beyond classical computing?

Quantum Processor

Type to enter 
text

Technology: to beat 
 Moore‘s law

    Computer Science: new     
 complexity classes

    Physics: to learn about 
 quantum theory

Why Quantum Computing?



Qubit ...

classical bit  quantum-bit or qubit
 0 or 1  0 or 1 or

0 

1 

01



... and quantum registers

classical registers 

010

quantum registers 

000  001  010  011
100  101  110  111

Erwin Schrödinger:
Entanglement

000  001  010  011
100  101  110  111

i| +| i

classical bit  quantum-bit or qubit
 0 or 1  0 or 1 or 01



  How big is quantum memory?

n qubits

Hilbert space
is HUGE!

example: n ~ 300   
                2300 ~ atoms in the universe 

„...it is difficult to simulate quantum mechanics on a classical 
computer.“  (Richard Feynman, 1986)



  How a quantum computer works ...

quantum 
processor

Single qubit gate

Two-qubit quantum gate

output

input

Quantum parallel 
processing



   Quantum Parallelism & Algorithms

computational paths can interfere in 
Hilbert space

interferometer

in

out

interference pattern
initial state 
(input)

final state 
(output)
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• general purpose quantum 
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coherent Hamiltonian evolution
    - quantum gates
    - deterministic

quantum logic network model

• atomic physics: 
trapped ionsJ. I. Cirac J. I. Cirac
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uibkInnsbruck Ion Trap Quantum Computer

Quantum operations & compiler: 

+++ ...
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J. Barreiro, M.Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, 
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uibkDigital Quantum Simulation

idea: approximate time evolution by a stroboscopic sequence of gates
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when subducted lithosphere entered the shallow
lower mantle and stagnated because of density
inversion and increased mantle viscosity (14, 27)
(Fig. 3B). If heated to ambient mantle tempera-
tures, carbonated basaltic lithologies form carbo-
natedmelts, which can then be reduced to diamond
during reactions with surrounding mantle (8, 28).
Our results also indicate that the diamonds were
transported by convection from the lower to the
upper mantle, where the originally homogeneous
inclusions unmixed. For example, phase relations
along the NaAlSiO4-MgAl2O4 boundary (29) in-
dicate that the bulk composition of inclusion
Ju5-20 would yield the observed assemblage of
nepheline plus spinel (Fig. 1A and fig. S1B) at
depths of ~150 km; other inclusions in diamonds
from the Juina region (3, 4, 8) also suggest equil-
ibration near the base of the Brazilian lithosphere
(~150 to 200 km). Thus, the diamonds record a
history of upward transport on the order of 500
to 1000 km or more before being sampled by a
Cretaceous kimberlite and brought to the surface.

On the basis of seismological and petrological
evidence, previous workers have argued for a man-
tle plume beneath Brazil during the Cretaceous
(30, 31). Furthermore, paleo-plate reconstruc-
tions show that the Juina region of Brazil was lo-
cated at the margin of the African large low shear
velocity provinces during the Cretaceous, which
may be indicative of the presence of deep mantle
plumes (32). We suggest that some portion of
stagnated subducted lithosphere in which the di-
amonds grew was transported from the lower
mantle to the base of the Brazilian lithosphere in
a rising mantle plume (Fig. 3B). The Juina-5 di-
amonds and their inclusions provide compelling
evidence for deep cycling of oceanic crust and

surface carbon into the lower mantle and, ulti-
mately, exhumation back to the upper mantle and
Earth’s surface.
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Universal Digital Quantum Simulation
with Trapped Ions
B. P. Lanyon,1,2* C. Hempel,1,2 D. Nigg,2 M. Müller,1,3 R. Gerritsma,1,2 F. Zähringer,1,2

P. Schindler,2 J. T. Barreiro,2 M. Rambach,1,2 G. Kirchmair,1,2 M. Hennrich,2 P. Zoller,1,3

R. Blatt,1,2 C. F. Roos1,2

A digital quantum simulator is an envisioned quantum device that can be programmed to efficiently
simulate any other local system. We demonstrate and investigate the digital approach to quantum
simulation in a system of trapped ions. With sequences of up to 100 gates and 6 qubits, the full
time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally
present in our simulator are accurately reproduced, and quantitative bounds are provided for the
overall simulation quality. Our results demonstrate the key principles of digital quantum simulation and
provide evidence that the level of control required for a full-scale device is within reach.

Althoughmany natural phenomena are ac-
curately described by the laws of quan-
tum mechanics, solving the associated

equations to calculate properties of physical sys-
tems, i.e., simulating quantum physics, is in gen-

eral thought to be very difficult (1). Both the
number of parameters and differential equations
that describe a quantum state and its dynamics
grow exponentially with the number of particles
involved. One proposed solution is to build a

highly controllable quantum system that can ef-
ficiently perform the simulations (2). Recently,
quantum simulations have been performed in
several different systems (3–13), largely follow-
ing the analog approach (2) whereby an analo-
gousmodel is built, with a directmapping between
the state and dynamics of the simulated system
and those of the simulator. An analog simulator
is dedicated to a particular problem, or class of
problems.

A digital quantum simulator (2, 14–16) is a
precisely controllable many-body quantum sys-
tem onwhich a universal set of quantum operations
(gates) can be performed, i.e., a quantum computer
(17). The simulated state is encoded in a register

1Institut für Quantenoptik und Quanteninformation, Öster-
reichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1,
A-6020 Innsbruck, Austria. 2Institut für Experimentalphysik, Uni-
versity of Innsbruck, Technikerstr. 25, A-6020 Innsbruck,
Austria. 3Institut für Theoretische Physik, University of
Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
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when subducted lithosphere entered the shallow
lower mantle and stagnated because of density
inversion and increased mantle viscosity (14, 27)
(Fig. 3B). If heated to ambient mantle tempera-
tures, carbonated basaltic lithologies form carbo-
natedmelts, which can then be reduced to diamond
during reactions with surrounding mantle (8, 28).
Our results also indicate that the diamonds were
transported by convection from the lower to the
upper mantle, where the originally homogeneous
inclusions unmixed. For example, phase relations
along the NaAlSiO4-MgAl2O4 boundary (29) in-
dicate that the bulk composition of inclusion
Ju5-20 would yield the observed assemblage of
nepheline plus spinel (Fig. 1A and fig. S1B) at
depths of ~150 km; other inclusions in diamonds
from the Juina region (3, 4, 8) also suggest equil-
ibration near the base of the Brazilian lithosphere
(~150 to 200 km). Thus, the diamonds record a
history of upward transport on the order of 500
to 1000 km or more before being sampled by a
Cretaceous kimberlite and brought to the surface.

On the basis of seismological and petrological
evidence, previous workers have argued for a man-
tle plume beneath Brazil during the Cretaceous
(30, 31). Furthermore, paleo-plate reconstruc-
tions show that the Juina region of Brazil was lo-
cated at the margin of the African large low shear
velocity provinces during the Cretaceous, which
may be indicative of the presence of deep mantle
plumes (32). We suggest that some portion of
stagnated subducted lithosphere in which the di-
amonds grew was transported from the lower
mantle to the base of the Brazilian lithosphere in
a rising mantle plume (Fig. 3B). The Juina-5 di-
amonds and their inclusions provide compelling
evidence for deep cycling of oceanic crust and

surface carbon into the lower mantle and, ulti-
mately, exhumation back to the upper mantle and
Earth’s surface.
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A digital quantum simulator is an envisioned quantum device that can be programmed to efficiently
simulate any other local system. We demonstrate and investigate the digital approach to quantum
simulation in a system of trapped ions. With sequences of up to 100 gates and 6 qubits, the full
time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally
present in our simulator are accurately reproduced, and quantitative bounds are provided for the
overall simulation quality. Our results demonstrate the key principles of digital quantum simulation and
provide evidence that the level of control required for a full-scale device is within reach.

Althoughmany natural phenomena are ac-
curately described by the laws of quan-
tum mechanics, solving the associated

equations to calculate properties of physical sys-
tems, i.e., simulating quantum physics, is in gen-

eral thought to be very difficult (1). Both the
number of parameters and differential equations
that describe a quantum state and its dynamics
grow exponentially with the number of particles
involved. One proposed solution is to build a

highly controllable quantum system that can ef-
ficiently perform the simulations (2). Recently,
quantum simulations have been performed in
several different systems (3–13), largely follow-
ing the analog approach (2) whereby an analo-
gousmodel is built, with a directmapping between
the state and dynamics of the simulated system
and those of the simulator. An analog simulator
is dedicated to a particular problem, or class of
problems.

A digital quantum simulator (2, 14–16) is a
precisely controllable many-body quantum sys-
tem onwhich a universal set of quantum operations
(gates) can be performed, i.e., a quantum computer
(17). The simulated state is encoded in a register
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when subducted lithosphere entered the shallow
lower mantle and stagnated because of density
inversion and increased mantle viscosity (14, 27)
(Fig. 3B). If heated to ambient mantle tempera-
tures, carbonated basaltic lithologies form carbo-
natedmelts, which can then be reduced to diamond
during reactions with surrounding mantle (8, 28).
Our results also indicate that the diamonds were
transported by convection from the lower to the
upper mantle, where the originally homogeneous
inclusions unmixed. For example, phase relations
along the NaAlSiO4-MgAl2O4 boundary (29) in-
dicate that the bulk composition of inclusion
Ju5-20 would yield the observed assemblage of
nepheline plus spinel (Fig. 1A and fig. S1B) at
depths of ~150 km; other inclusions in diamonds
from the Juina region (3, 4, 8) also suggest equil-
ibration near the base of the Brazilian lithosphere
(~150 to 200 km). Thus, the diamonds record a
history of upward transport on the order of 500
to 1000 km or more before being sampled by a
Cretaceous kimberlite and brought to the surface.

On the basis of seismological and petrological
evidence, previous workers have argued for a man-
tle plume beneath Brazil during the Cretaceous
(30, 31). Furthermore, paleo-plate reconstruc-
tions show that the Juina region of Brazil was lo-
cated at the margin of the African large low shear
velocity provinces during the Cretaceous, which
may be indicative of the presence of deep mantle
plumes (32). We suggest that some portion of
stagnated subducted lithosphere in which the di-
amonds grew was transported from the lower
mantle to the base of the Brazilian lithosphere in
a rising mantle plume (Fig. 3B). The Juina-5 di-
amonds and their inclusions provide compelling
evidence for deep cycling of oceanic crust and

surface carbon into the lower mantle and, ulti-
mately, exhumation back to the upper mantle and
Earth’s surface.
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A digital quantum simulator is an envisioned quantum device that can be programmed to efficiently
simulate any other local system. We demonstrate and investigate the digital approach to quantum
simulation in a system of trapped ions. With sequences of up to 100 gates and 6 qubits, the full
time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally
present in our simulator are accurately reproduced, and quantitative bounds are provided for the
overall simulation quality. Our results demonstrate the key principles of digital quantum simulation and
provide evidence that the level of control required for a full-scale device is within reach.

Althoughmany natural phenomena are ac-
curately described by the laws of quan-
tum mechanics, solving the associated

equations to calculate properties of physical sys-
tems, i.e., simulating quantum physics, is in gen-

eral thought to be very difficult (1). Both the
number of parameters and differential equations
that describe a quantum state and its dynamics
grow exponentially with the number of particles
involved. One proposed solution is to build a

highly controllable quantum system that can ef-
ficiently perform the simulations (2). Recently,
quantum simulations have been performed in
several different systems (3–13), largely follow-
ing the analog approach (2) whereby an analo-
gousmodel is built, with a directmapping between
the state and dynamics of the simulated system
and those of the simulator. An analog simulator
is dedicated to a particular problem, or class of
problems.

A digital quantum simulator (2, 14–16) is a
precisely controllable many-body quantum sys-
tem onwhich a universal set of quantum operations
(gates) can be performed, i.e., a quantum computer
(17). The simulated state is encoded in a register
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experiments (≈1 to 2 ms). The current leading
sources of error, which limit both the simulation
complexity and size, are thought to be laser
intensity fluctuations (23). This is not currently
a fundamental limitation and, once properly ad-
dressed, should enable an increase in simulation
capabilities.

The digital approach can be combined with
existing tools and techniques for analog simu-
lations to expand the range of systems that can be
simulated. In light of the present work, and cur-

rent ion trap development (35), digital quantum
simulations involving many tens of qubits and
hundreds of high-fidelity gates seems feasible in
coming years.
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Fig. 3. Digital simulations of three-spin systems.
Dynamics of the initial state |↑↑↑〉 in three cases.
(A) Long-range Ising system. Spin-spin coupling be-
tween all pairs with equal strength and a transverse
field. C = O2(p /32), D = O4(p /16,0). (B) Inhomog-
eneous distribution of spin-spin couplings, decom-
posed into an equal-strength interaction and
another with twice the strength between one pair.
E = O1(p /2,1). (C) Three-body interaction, which
couples the ∑jsy

jeigenstates |←←←〉y and |→→→〉y.
An O3(p /4,0) operation before measurement
rotates the state into the logical sz basis. F =
O1(q,1), 4D = O4(p/4,0). Any point in the phase
evolution is simulated by varying the phase q of
operation F. Inequalities bound the quantum pro-
cess fidelity Fp [see (23) for details].

Fig. 4. Digital simulations of four and six spin sys-
tems. Dynamics of the initial state where all spins
point up. (A) Four spin long-range Ising system.
Each digital step is D.C = O4(p/16,0).O2(p/32).
Error bars are smaller than point size. (B) Six spin
six-body interaction. F = O1(q,1), 4D = O4(p/4,0).
The inequality at f = 0.25 p bounds the quantum
process fidelity Fp at q = 0.25 p [see (23) for details].
Lines; exact dynamics. Unfilled shapes: ideal digitized;
filled shapes: data (■P0 ♦P1 ●P2 ▲P3 ►P4 ▼P5 ◄P6,
where Pi is the total probability of finding ispins
pointing down).
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Real-time dynamics of lattice gauge theories with a 
few-qubit quantum computer
Esteban A. Martinez1*, Christine A. Muschik2,3*, Philipp Schindler1, Daniel Nigg1, Alexander Erhard1, Markus Heyl2,4, 
Philipp Hauke2,3, Marcello Dalmonte2,3, Thomas Monz1, Peter Zoller2,3 & Rainer Blatt1,2

Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high- intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).
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Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high- intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).

© 2016 Macmillan Publishers Limited. All rights reserved

Schwinger pair production ion trap quantum computer

5 1 6  |  N A T U R E  |  V O L  5 3 4  |  2 3  J U N E  2 0 1 6

LETTER
doi:10.1038/nature18318

Real-time dynamics of lattice gauge theories with a 
few-qubit quantum computer
Esteban A. Martinez1*, Christine A. Muschik2,3*, Philipp Schindler1, Daniel Nigg1, Alexander Erhard1, Markus Heyl2,4, 
Philipp Hauke2,3, Marcello Dalmonte2,3, Thomas Monz1, Peter Zoller2,3 & Rainer Blatt1,2

Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high- intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).
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Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high- intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).
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windows. By repeating the sequence multiple times, the resulting time 
evolution of the system U(t) closely resembles an evolution where the 
individual parts of the Hamiltonian act simultaneously, as can be shown 
using the Suzuki–Lie–Trotter expansion:

ˆ ˆ( )= =
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Our scheme is depicted in Fig. 2f–h. It allows for an efficient realization 
of the required dynamics and implements the coupling matrix shown 
in Fig. 2d, e with a minimal number of time steps, scaling only linearly 
in the number of sites N. The scheme is therefore scalable to larger 
systems. A discussion of finite size effects can be found in Methods.

We realize the simulation in a quantum information processor based 
on a string of 40Ca+ ions confined in a macroscopic linear Paul trap 
(Fig. 1b). There, each qubit is encoded in the electronic states | ↓ 〉  =  4S1/2 
(with magnetic quantum number m =  −  1/2), | ↑ 〉  =  3D5/2 (m =  −  1/2) 
of a single ion. The energy difference between these states is in the 
optical domain, so the state of the qubit can be manipulated using laser 
light pulses. More specifically, a universal set of high-fidelity quantum 
operations is available, consisting of collective rotations around the 
equator of the Bloch sphere, addressed rotations around the z axis and 

entangling Mølmer–Sørensen (MS) gates26. With a sequence of these 
gates, arbitrary unitary operations can be implemented27. Thus, we 
are able to simulate any Hamiltonian evolution, and in particular the 
interactions required here, by means of digital quantum simulation 
techniques, as shown in Fig. 2. Each of the implemented time evolu-
tions consists of a sequence of over 200 quantum gates (see Extended 
Data Fig. 3). In order to realize the non-local interactions Hzz and H±  
with their specific long-range interactions, we use global MS entan-
gling gates together with a spectroscopic decoupling method to tailor 
the range of the interaction. For the decoupling, the population of the 
ions that are not involved in the specific operations are shelved into 
additional electronic states that are not affected by the light for the 
entangling operations (see Methods). The local terms in Hz correspond 
to z rotations that are directly available in our set of operations. The 
strength of all terms can be tuned by changing the duration of the laser 
pulses corresponding to the physical operations.

Within our scheme, a wide range of fundamental properties in 
one-dimensional lattice gauge theories can be studied. To demonstrate 
our approach, we concentrate on simulating the coherent quantum 
real-time dynamics of the Schwinger mechanism, that is, the creation 
of particle–antiparticle pairs out of the bare vacuum | vacuum〉 ,  
where matter is entirely absent (see Methods). After initializing the 
system in this state, which corres ponds to the ground state for m →  ∞  
(Fig. 3a), we apply ĤS (Fig. 2d) for different masses and coupling 
strengths. As a first step, we measure the particle number density 
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Figure 3 | Time evolution of the particle number density, ν. a, We show 
the ideal evolution under the Schwinger Hamiltonian ĤS shown in Fig. 2d, 
the ideal evolution considering time discretization errors (see Fig. 2),  
the expected evolution including an experimental (exp.) error model  
(see Methods) and the experimental data for electric field energy J =  w  
and particle mass m =  0.5w (see equation (1)). After postselection of the 
experimental data (see Methods), the remaining populations are {86 ±   2, 
79 ±   1, 73 ±   1, 69 ±   1}% after {1, 2, 3, 4} time steps (averaged over all  
data sets). Error bars correspond to standard deviations estimated from a 
Monte Carlo bootstrapping procedure. The insets show the initial state  
of the simulation (left inset), corresponding to the bare vacuum with 
particle number density ν =  0, as well as one example of a state containing 
one pair (right inset), that is, a state with ν =  0.5, represented as  
filled/empty arrows as in Fig. 2. b, Experimental data and c, theoretical 
prediction for the evolution of the particle number density ν as a function 
of the dimensionless time wt and the dimensionless particle mass m/w, 
with J =  w.
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Figure 4 | Time evolution of the vacuum persistence amplitude and 
entanglement. We show the square of the vacuum persistence amplitude 
| G(t)| 2 (the Loschmidt echo), which quantifies the decay of the unstable 
vacuum, and the logarithmic negativity En, a measure of the entanglement 
between the left and the right halves of the system. a, b, The time evolution 
of | G(t)| 2 (a) and En (b) for different values of the particle mass m and 
fixed electric field energy J =  w, where w is the rate of particle–antiparticle 
creation and annihilation (compare equation (1)), as a function of the 
dimensionless time wt. c, d, The time evolution of | G(t)| 2 (c) and En (d) 
changes for different values of J and fixed particle mass m =  0. Circles 
correspond to the experimental data and squares connected by solid lines 
to the expected evolution assuming an experimental error model explained 
in Methods. Error bars correspond to standard deviations estimated from 
a Monte Carlo bootstrapping procedure. e, Illustration of the creation of a 
particle–antiparticle pair starting from the bare vacuum state.
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Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
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systems. In contrast, quantum simulations aim at the long-term goal 
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restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
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This allows us to explore quantum simulation of coherent real-time 
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).
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Quantum simulation of frustrated Ising spins with
trapped ions
K. Kim1, M.-S. Chang1, S. Korenblit1, R. Islam1, E. E. Edwards1, J. K. Freericks2, G.-D. Lin3, L.-M. Duan3 & C. Monroe1

A network is frustrated when competing interactions between
nodes prevent each bond from being satisfied. This compromise
is central to the behaviour of many complex systems, from social1

and neural2 networks to protein folding3 and magnetism4,5.
Frustrated networks have highly degenerate ground states, with
excess entropy and disorder even at zero temperature. In the case
of quantum networks, frustration can lead to massively entangled
ground states, underpinning exotic materials such as quantum spin
liquids and spin glasses6–9. Here we realize a quantum simulation of
frustrated Ising spins in a system of three trapped atomic ions10–12,
whose interactions are precisely controlled using optical forces13.
We study the ground state of this system as it adiabatically evolves
from a transverse polarized state, and observe that frustration
induces extra degeneracy. We also measure the entanglement in
the system, finding a link between frustration and ground-state
entanglement. This experimental system can be scaled to simulate
larger numbers of spins, the ground states of which (for frustrated
interactions) cannot be simulated on a classical computer.

Linus Pauling predicted in 1945 that the frustrated oxygen–hydrogen
bond lengths in the pyrochloric lattice of ice would lead to a macro-
scopic degeneracy of the ground state near zero temperature14. This
zero-point entropy has been observed in spin-ice materials5,15, where
the competing interactions are magnetic in nature. In the simple case
of a two-dimensional triangular lattice with frustrated antiferromag-
netic Ising interactions, the ground-state degeneracy can easily be seen
(Fig. 1a): only two of the three spins on each triangular cell can align
antiparallel, so all possible mixed configurations in each triangle
(three-quarters of all cases) are ground states. Quantum super-
position of these degenerate states leads to massive entanglement that
is important in our understanding of the complex phase structure of
many frustrated materials, ranging from molecular and liquid crystals
to high-temperature superconductors5,16.

In our experiment, we implement a quantum simulation of the
smallest possible frustrated magnetic network, which consists of three
spins. This work builds on earlier results for two trapped ions12, in a
system that can be scaled to much larger numbers of spins. We control
the sign and strength of the individual magnetic interactions, directly
measure all possible spin correlation functions and characterize
entanglement using techniques borrowed from quantum information
science12,17. The experiment is based on a linear chain of three trapped
atomic 171Yb1 ions, where the effective spin-1/2 system is represented
by the 2S1/2 jF 5 1, mF 5 0æ and jF 5 0, mF 5 0æ hyperfine ‘clock’ states
in each ion, depicted by j"æz and j#æz, respectively18, and separated in
frequency by nHF 5 12.642821 GHz.

The ions are confined in a three-layer linear trap13 and form a
crystal along the trap’s z axis with a centre-of-mass trap frequency
of nz 5 1.49 MHz. The three normal modes of transverse motion
along the principal x axis occur at frequencies n1 5 4.334 MHz,

n2 5 4.074 MHz and n3 5 3.674 MHz. Off-resonance laser beams
uniformly illuminate the ions, driving stimulated Raman transitions
between the spin states and also imparting spin-dependent forces in
the x direction. As discussed in Methods, this allows quantum simu-
lation of the Ising Hamiltonian with a transverse field10–12
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where By is an effective uniform transverse magnetic field with each
spin having unit magnetic moment, and we have set Planck’s constant,
h, equal to one. For three spins, we define J1 ; J1,2 5 J2,3 as the nearest-
neighbour interaction and J2 ; J1,3 as the next-nearest-neighbour
interaction (Fig. 1b), and s (i)

a denote the Pauli matrices of the ith spin.
We initialize each spin parallel to a strong transverse field and then
adiabatically lower the field relative to the Ising couplings so that the
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Figure 1 | Frustrated Ising spins. a, Simplest case of spin frustration, with
three antiferromagnetic spins on a triangle. b, Image of three trapped atomic
171Yb1 ions in the experiment, taken with an intensified charge-coupled-
device camera, with nearest-neighbour (J1) and next-nearest-neighbour (J2)
interactions. c, Expected form of the Ising interactions J1 and J2, controlled
through the detuning, m, of an optical spin-dependent force, scaled to the
axial (nz) and transverse (n1) centre-of-mass (CM) normal-mode frequencies
of motion such that the CM, tilt and zigzag modes of transverse motion
occur at ~mm:(m2{n2

1)=n2
z 5 0, 21 and 22.4, respectively13.
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system that can be scaled to much larger numbers of spins. We control
the sign and strength of the individual magnetic interactions, directly
measure all possible spin correlation functions and characterize
entanglement using techniques borrowed from quantum information
science12,17. The experiment is based on a linear chain of three trapped
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in each ion, depicted by j"æz and j#æz, respectively18, and separated in
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magnetization of each spin
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ated excitations act as radiating sources of entangled quasi-
particles with dispersion relations determined by the under-
lying system interactions. Possibly here start wtih: in the
case of short-range interactions get well defined group veloc-
ity - supoerpositions of left and right travelling wavepackets
emerge and distribute entanglement. for long-range....

Our system, realised with trapped ions in a linear Paul trap,
is accurately described by the transverse Ising model

HIsing = ~
X
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Ji j�
(i)
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( j)
x + ~B

X
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�(i)
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where �(i)
� (� = x, y, z, ) are the spin-1/2 Pauli operators

for the ith spin, B is the e↵ective transverse magnetic
field and Ji j is the coupling matrix with approximately
power-law decay with the lattice distance |i � j| that can be
tuned between infinite-range (↵ = 0) and, asymptotically,
short-range (↵ = 3). The chosen interaction range deter-
mines the magnon quasi-particle dispersion relationship and
their interactions in the system (fig 1). In the case where
B >> max(Ji j) the number of spin excitations is conserved
and HIsing reduces to the XY model of hopping hardcore
bosons HXY =

P
i< j Ji j(�+�� + ���+). (somewhere say:?

our quasi-particles are hardcore bosons, maybe figure 1
caption)We can varify the system behaviour by directly
measuring the exact spatial distribution of the spin-spin
interactions in our system, i.e. the underlying Hamiltonian,
and the corresponding quasi-particle dispersion relationship
(see methods), which are seen to closely match theoretical
predictions (Fig 1b-c).

Starting with the steady state of all spins down we per-
form arbitrary local and global quenches of system. For local
quenches this means fully flipping or making superpositions
(|+i = (| #i+| "i)/

p
2) of individual spins. (something about?:

with local quench probe low lying excitations of system and
QP dispersion relation. With global quench probe high lying
excitations and QP interactions become really important.) In
this case the spread of information from the quench site(s)
around system can be seen in spatially and temporally re-
solved single spin observables like the magnetisation hZ(t)i.
At early times wavefronts radiating away from single spin-
excitations are clearly visible while at later times reflections
result in complex interference patterns (fig 1a-b). Creating
excitations at either end of the spin chain creates counter-
propagating wavefronts resulting in quasi-particle collisions,
with properties dependant on the underlying interaction range
(Fig 1c).

For global quenches rotate all spins are prepared in the
superposition state |+i. This corresponds to a superposition
of all possible system excitations and therefore all super-
positions of magnon dynamics will occur. In this case the
underlying physics can be investigated by measuring two-spin
correlation functions (fig 1d). The propagation of correlations
following global quenches in spin chains is explored in a

FIG. 2: Magnon dynamics in a systems of 7 interacting quantum
spins following local and global quenches. a-c. Time evolution of
the magnetisation hZ(t)i of each spin in the system following a local
quench at: a the centre spin, for ↵ ⇡ ??. a.i, data, a.ii, theory: b
the left hand spin, for ↵ ⇡ ??, b.i, data, b.ii, theory and: c both ends
of the chain resulting, for ↵ ⇡ ??, (data only). d. Time evolution
of two-spin correlation function C = hZi(t)Zj(t)i � hZi(t)ihZj(t)i fol-
lowing a global quench, for ↵ ⇡ ?? (see methods, where we must
explain that done with smaller B field).

complimentary paper by Monroe [? ].

To reveal the quantum correlations carried by quasi-
particles we tomographically measure the full quantum state
of pairs of spins at many points during the dynamics. In this
case we employ short-range interactions (↵ 2) for which a
clear wavefront is apparent following a local quench in the
centre of the spin chain (fig 3a). The results clearly show that
magnons emerging from either side of the initial excitation are
entangled, and distribute this entanglement across the spin-
chain at a finite velocity (fig 3b-c). In general it is possible to
measure the quantum state of any subset of spins at any point
in the dynamics.

In the case of nearest-neighbour interactions, LR bounds
say that information is restricted to propagate within well de-
fined wavefronts, beyond which the signal amplitude decays
exponentially (both in space and time). In that case, the sys-
tems maximal group velocity tightly bounds the propagating
wave front. In the presence of power-law interactions that
decay su�ciently fast, one can still obtain an approximate
light cone by considering only the nearest-neighbor interac-
tions [8? ], but now the signal decays algebraically outside
of this approximate light cone. When the interactions become
of longer range, there are more magnons that propagate faster
than the nearest-neighbor wave front, and the light-cone con-
cept breaks down.

This e↵ect is exemplified in Fig. 4a-c for local quenches
at three values of ↵, chosen roughly equally spaced around
↵ = 1. In the shortest-range case (Fig. 4a, ↵ ⇠ 1.41), the ob-
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ated excitations act as radiating sources of entangled quasi-
particles with dispersion relations determined by the under-
lying system interactions. Possibly here start wtih: in the
case of short-range interactions get well defined group veloc-
ity - supoerpositions of left and right travelling wavepackets
emerge and distribute entanglement. for long-range....

Our system, realised with trapped ions in a linear Paul trap,
is accurately described by the transverse Ising model

HIsing = ~
X

i, j

Ji j�
(i)
x �

( j)
x + ~B

X

i

�(i)
z

where �(i)
� (� = x, y, z, ) are the spin-1/2 Pauli operators

for the ith spin, B is the e↵ective transverse magnetic
field and Ji j is the coupling matrix with approximately
power-law decay with the lattice distance |i � j| that can be
tuned between infinite-range (↵ = 0) and, asymptotically,
short-range (↵ = 3). The chosen interaction range deter-
mines the magnon quasi-particle dispersion relationship and
their interactions in the system (fig 1). In the case where
B >> max(Ji j) the number of spin excitations is conserved
and HIsing reduces to the XY model of hopping hardcore
bosons HXY =

P
i< j Ji j(�+�� + ���+). (somewhere say:?

our quasi-particles are hardcore bosons, maybe figure 1
caption)We can varify the system behaviour by directly
measuring the exact spatial distribution of the spin-spin
interactions in our system, i.e. the underlying Hamiltonian,
and the corresponding quasi-particle dispersion relationship
(see methods), which are seen to closely match theoretical
predictions (Fig 1b-c).

Starting with the steady state of all spins down we per-
form arbitrary local and global quenches of system. For local
quenches this means fully flipping or making superpositions
(|+i = (| #i+| "i)/

p
2) of individual spins. (something about?:

with local quench probe low lying excitations of system and
QP dispersion relation. With global quench probe high lying
excitations and QP interactions become really important.) In
this case the spread of information from the quench site(s)
around system can be seen in spatially and temporally re-
solved single spin observables like the magnetisation hZ(t)i.
At early times wavefronts radiating away from single spin-
excitations are clearly visible while at later times reflections
result in complex interference patterns (fig 1a-b). Creating
excitations at either end of the spin chain creates counter-
propagating wavefronts resulting in quasi-particle collisions,
with properties dependant on the underlying interaction range
(Fig 1c).

For global quenches rotate all spins are prepared in the
superposition state |+i. This corresponds to a superposition
of all possible system excitations and therefore all super-
positions of magnon dynamics will occur. In this case the
underlying physics can be investigated by measuring two-spin
correlation functions (fig 1d). The propagation of correlations
following global quenches in spin chains is explored in a

FIG. 2: Magnon dynamics in a systems of 7 interacting quantum
spins following local and global quenches. a-c. Time evolution of
the magnetisation hZ(t)i of each spin in the system following a local
quench at: a the centre spin, for ↵ ⇡ ??. a.i, data, a.ii, theory: b
the left hand spin, for ↵ ⇡ ??, b.i, data, b.ii, theory and: c both ends
of the chain resulting, for ↵ ⇡ ??, (data only). d. Time evolution
of two-spin correlation function C = hZi(t)Zj(t)i � hZi(t)ihZj(t)i fol-
lowing a global quench, for ↵ ⇡ ?? (see methods, where we must
explain that done with smaller B field).

complimentary paper by Monroe [? ].

To reveal the quantum correlations carried by quasi-
particles we tomographically measure the full quantum state
of pairs of spins at many points during the dynamics. In this
case we employ short-range interactions (↵ 2) for which a
clear wavefront is apparent following a local quench in the
centre of the spin chain (fig 3a). The results clearly show that
magnons emerging from either side of the initial excitation are
entangled, and distribute this entanglement across the spin-
chain at a finite velocity (fig 3b-c). In general it is possible to
measure the quantum state of any subset of spins at any point
in the dynamics.

In the case of nearest-neighbour interactions, LR bounds
say that information is restricted to propagate within well de-
fined wavefronts, beyond which the signal amplitude decays
exponentially (both in space and time). In that case, the sys-
tems maximal group velocity tightly bounds the propagating
wave front. In the presence of power-law interactions that
decay su�ciently fast, one can still obtain an approximate
light cone by considering only the nearest-neighbor interac-
tions [8? ], but now the signal decays algebraically outside
of this approximate light cone. When the interactions become
of longer range, there are more magnons that propagate faster
than the nearest-neighbor wave front, and the light-cone con-
cept breaks down.

This e↵ect is exemplified in Fig. 4a-c for local quenches
at three values of ↵, chosen roughly equally spaced around
↵ = 1. In the shortest-range case (Fig. 4a, ↵ ⇠ 1.41), the ob-

P Jurcevic, et al., PZ,  R Blatt &  CF Roos, Nature (2014); related work by C. Monroe group



Progress in Engineered Atomic Many-Body Systems

Rydberg Atoms (MPQ, CUA, IOGS,…)

Endres et al., Science (2016) Barredo et al., Science (2016)

Ion Traps (IBK, NIST, JQI, Oxford,…) C. Monroe, JQI, Nature 2017
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Figure 4: Domain statistics and reconstructed single shot images of 53 spins. (a) Top and bottom: reconstructed
images based on binary detection of spin state (see Appendix E).The top image shows a chain of 53 ions in bright spin states.
The other three images show 53 ions in combinations of bright and dark spin states. Center: statistics of the sizes of domains,
or blocks with spins pointing along the same direction. Histograms are plotted on a logarithmic scale, to visualize the rare
regions with large domains. Dashed lines are fits to exponential functions, which could be expected for infinite-temperature
thermal state. Long tails of deviations are clearly visible, and varies depending on B̃z/J0. (b) Mean of the largest domain sizes
in each single experimental shot. Error bars are the standard deviation of the mean (see Appendix F). Dashed lines represent
a piecewise linear fit, from which we extract the transition point (see text). The green, yellow, and red data points correspond
to the transverse fields shown in the domain statistics data on the left.

The occurrence of long domains of correlated spins in
the state |"ix (fluorescing spins) signifies the fully po-
larized initial state, where the correlations in the initial
state are largely preserved by the interactions. With an
increasing transverse field, the absence of spin-ordering
is reflected by exponentially small probabilities for ob-
serving long strings. We plot the domain length statis-
tics in Fig. 4a at late times (see Appendix F), for three
example transverse field strengths, B̃z/J0 = (0.1, 1.0,
1.6). The dashed lines in Fig. 4a are fits to exponen-
tials on the histogram of domain sizes. The rare occur-
rence of especially large domains (e.g. the red boxes in
Fig. 4a) shows the existence of many-body high-order
correlations, where the order is given by the length of
the domain. We plot the mean of the largest domain size
in Fig. 4b, as a function of the normalized transverse field
strength. The average longest domain size ranges from
12 to 20, and shows a sharp transition across the critical
point of the DPT. We fit this observable to a piecewise
linear function, and extract the critical point to be B̃z/J0

= 0.89(7). For more details, see Appendix F.
The DPT studied here, with up to 53 trapped ion

qubits, is the largest quantum simulation ever performed
with high-e�ciency single shot individual qubit measure-
ments. This gives access to arbitrary many-body corre-
lators that carry information that is di�cult or impossi-
ble to model classically. This experimental platform can
be extended to tackle provably hard quantum problems
such as Ising sampling [36]. Given an even higher level
of control over the interactions between spins, as already
demonstrated for smaller numbers of trapped ion qubits
[37], this same system can be upgraded to a universal
quantum computer.

APPENDIX A: CONFINEMENT OF LONG ION
CHAINS

The ion chain is confined in a 3-layer linear Paul trap
with ⌫cm = 4.85 MHz transverse center-of-mass motional
frequency [30]. The harmonic axial confinement is kept
low enough so that the lowest energy conformation of the
ions is linear; for 8� 16 ions the axial center-of-mass fre-
quency is ⇠ 400 kHz and for 53 ions it is ⇠ 200 kHz. The
ion spacing is anisotropic across the chain, with typical
spacings of 1.5 µm at the center of the chain and 3.5 µm
at either end [38].

The e↵ective lifetime of an ion chain is limited by
Langevin collisions with the residual background gas in
the UHV apparatus [39], which in general re-orders the
crystal but can also melt the crystal and even ultimately
eject the ions from rf-heating or other mechanisms. This
can be mitigated by quickly re-cooling the chain, and
we expect that occasionally the crystal returns without
notice. Rarely, such collisions with the background gas
are inelastic, either populating the 171Yb+ ion in the
metastable F7/2 state or forming a YbH+ molecule. The
355 nm Raman laser quickly returns the ions back to their
atomic ground state manifold, with a small probability
of creating doubly-charged ions. The mean time between
Langevin collisions is expected to be of order 1 collision
per hour per trapped ion, and we expect that the mean
lifetime for a chain of ions might therefore scale inversely
with the number of ions. For 53 ions we observe an av-
erage lifetime of about 5 minutes. However, we observe
rare events where a long ion chain survives for about 30
minutes. We speculate that either the chain is consis-
tently re-captured instantaneously, or the local pressure

New tools: quantum gas microscope 

Gross, Bloch, Science (2017)

single site quantum control  
and measurement

Hubbard models (MPQ, CUA, JQI, …)

Kaufman et al., Science (2016)Choi et al., Science (2016)

New theory protocols enabled / motivated by 1) single site control

2) high repetition rate

How to measure Renyi entropies 

demonstrating entanglement?
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Preparation of a low entropy state

Spin Models with Arrays of Rydberg Atoms

… or Quantum Computer
Challenges:
✓controllability

✓scalability

see	also	Hubbard-type	Models:	Regal	(JILA),	Jochim	(Heidelberg),	M.	Andersen	(Otago)
Lukin-Greiner-Vuletic	groups	(Harvard	-	MIT),	Browaeys	(Palaiseau),	Saffman	(Wisconsin),	Biedermann	(Sandia)
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Rydberg Spin-Models [or Quantum Computer]
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Quantum many-body system (isolated)

Entanglement & Quantum Many-Body

A B

Reduced density matrix & entanglement spectrum

H = HA +HB +HAB

Entanglement entropy
S A =�TrA

�
�A log�A

�

S(n)
A = 1

1�n
logTrA�

n
A (� S A)

Von Neumann

Renyi

�A �TrB |����|

Question: Can we measure the  entropy / entanglement?

e.g. ground state

… characterize topological/strongly correlated quantum phases
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1. Measuring Renyi Entropies with Copies

copy 1

copy 2

A B

Tr{Ω2
A} Renyi entropy n=2 ~ purity
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1. Measuring Renyi Entropies with Copies

A.J. Daley, H. Pichler, J. Schachenmayer, PZ, PRL (2012).

H. Pichler, L. Bonnes, A. J. Daley, A. M. Läuchli and PZ, NJP (2013).

• theory:
bosons  
[& fermions]

C. Moura Alves and D. Jaksch, PRL (2004)

• experiment
R. Islam, M. Greiner et al., Nature (2015)

A.M. Kaufmann, M. Greiner et al., Science (2016)
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ρ⊗ρ⊗ρ⊗ρ⊗ρ
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n copies
Vn

V (n) |√1i . . . |√ni= |√ni |√1i . . . |√n°1i
shift (or swap) operator
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uibkI QOIQuantum Circuit
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visibility ª hV (n)i

Ramsey interferometer:

auxiliary
particle

A. K. Ekert, C. Moura Alves, D. K. L. Oi, M. Horodecki, P. Horodecki, and L. C. Kwek, PRL (2002). 

… we need a quantum computer (?)
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We find that for both consumption and assets,
models trained in-country uniformly outperform
models trained out-of-country (Fig. 5), as would
be expected. But we also find that models appear
to “travelwell” across borders,with out-of-country
predictions often approaching the accuracy of
in-country predictions. Pooled models trained
on all four consumption surveys or all five asset
surveys very nearly approach the predictive power
of in-country models in almost all countries for
both outcomes. These results indicate that, at least
for our sample of countries, common determi-
nants of livelihoods are revealed in imagery,
and these commonalities can be leveraged to
estimate consumption and asset outcomes with
reasonable accuracy in countries where survey
outcomes are unobserved.

Discussion

Our approach demonstrates that existing high-
resolution daytime satellite imagery can be used
to make fairly accurate predictions about the
spatial distribution of economic well-being across
five African countries. Our model performs well
despite inexact data on both the timing of the
daytime imagery and the location of clusters in
the training data, andmore precise data in either
of these dimensions are likely to further improve
model performance.
Notably, we show that our model’s predictive

powerdeclines onlymodestlywhenamodel trained
in one of our sample countries is used to estimate
consumption or assets in another country. Despite
differences in economic and political institutions
across countries, model-derived features appear
to identify fundamental commonalities in the de-
terminants of livelihoods across settings, suggest-
ing that our approach could be used to fill in the
large data gaps resulting from poor survey cover-
age inmanyAfrican countries. In contrast to other
recent approaches that rely on proprietary com-
mercial data sets, our method uses only publicly
available data and so is straightforward and nearly
costless to scale across countries.
Although ourmodel outperforms other sources

of passively collected data (e.g., cellphone data,
nightlights) in estimating economic well-being at
the cluster level, we are currently unable to assess
its ability to discern differences within clusters, as
public-domain survey data assign identical coordi-
nates to all households in a given cluster to preserve
respondent privacy. In principle, our model can
make predictions at any resolution for which day-
time satellite imagery is available, though predic-
tions on finer scales would likely be noisier. New
sources of ground truth data, whether from more
disaggregated surveys or novel crowdsourced chan-
nels, could enable evaluation of our model at the
household level. Combining our extracted features
with other passively collected data, in locations
where such data are available, could also increase
both household- and cluster-level predictive power.
Given the limited availability of high-resolution

time series of daytime imagery, we also have not
yet been able to evaluate the ability of our transfer
learning approach to predict changes in economic
well-being over time at particular locations. Such

predictionswouldbeveryhelpful tobothresearchers
and policy-makers and should be enabled in the
near futureas increasingamountsof high-resolution
satellite imagery become available (22).
Our transfer learning strategy of using a plen-

tiful but noisy proxy shows howpowerfulmachine
learning tools, which typically thrive in data-rich
settings, can be productively employed even when
data on key outcomes of interest are scarce. Our
approach could have broad application across
many scientific domains andmay be immediately
useful for inexpensively producing granular data
on other socioeconomic outcomes of interest to
the international community, such as the large
set of indicators proposed for the United Nations
Sustainable Development Goals (5).
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STATISTICAL PHYSICS

Quantum thermalization through
entanglement in an isolated
many-body system
Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,
Philipp M. Preiss, Markus Greiner*

Statistical mechanics relies on the maximization of entropy in a system at thermal
equilibrium. However, an isolated quantum many-body system initialized in a pure state
remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We
experimentally studied the emergence of statistical mechanics in a quantum state and
observed the fundamental role of quantum entanglement in facilitating this emergence.
Microscopy of an evolving quantum system indicates that the full quantum state remains
pure, whereas thermalization occurs on a local scale. We directly measured entanglement
entropy, which assumes the role of the thermal entropy in thermalization. The entanglement
creates local entropy that validates the use of statistical physics for local observables. Our
measurements are consistent with the eigenstate thermalization hypothesis.

W
hen an isolated quantum system is
perturbed—for instance, owing to a sud-
den change in the Hamiltonian (a so-
called quench)—the ensuing dynamics
are determined by an eigenstate distri-

bution that is induced by the quench (1). At any
given time, the evolving quantum state will have

amplitudes that depend on the eigenstates popu-
lated by the quench and the energy eigenvalues
of the Hamiltonian. In many cases, however,
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We find that for both consumption and assets,
models trained in-country uniformly outperform
models trained out-of-country (Fig. 5), as would
be expected. But we also find that models appear
to “travelwell” across borders,with out-of-country
predictions often approaching the accuracy of
in-country predictions. Pooled models trained
on all four consumption surveys or all five asset
surveys very nearly approach the predictive power
of in-country models in almost all countries for
both outcomes. These results indicate that, at least
for our sample of countries, common determi-
nants of livelihoods are revealed in imagery,
and these commonalities can be leveraged to
estimate consumption and asset outcomes with
reasonable accuracy in countries where survey
outcomes are unobserved.

Discussion

Our approach demonstrates that existing high-
resolution daytime satellite imagery can be used
to make fairly accurate predictions about the
spatial distribution of economic well-being across
five African countries. Our model performs well
despite inexact data on both the timing of the
daytime imagery and the location of clusters in
the training data, andmore precise data in either
of these dimensions are likely to further improve
model performance.
Notably, we show that our model’s predictive

powerdeclines onlymodestlywhenamodel trained
in one of our sample countries is used to estimate
consumption or assets in another country. Despite
differences in economic and political institutions
across countries, model-derived features appear
to identify fundamental commonalities in the de-
terminants of livelihoods across settings, suggest-
ing that our approach could be used to fill in the
large data gaps resulting from poor survey cover-
age inmanyAfrican countries. In contrast to other
recent approaches that rely on proprietary com-
mercial data sets, our method uses only publicly
available data and so is straightforward and nearly
costless to scale across countries.
Although ourmodel outperforms other sources

of passively collected data (e.g., cellphone data,
nightlights) in estimating economic well-being at
the cluster level, we are currently unable to assess
its ability to discern differences within clusters, as
public-domain survey data assign identical coordi-
nates to all households in a given cluster to preserve
respondent privacy. In principle, our model can
make predictions at any resolution for which day-
time satellite imagery is available, though predic-
tions on finer scales would likely be noisier. New
sources of ground truth data, whether from more
disaggregated surveys or novel crowdsourced chan-
nels, could enable evaluation of our model at the
household level. Combining our extracted features
with other passively collected data, in locations
where such data are available, could also increase
both household- and cluster-level predictive power.
Given the limited availability of high-resolution

time series of daytime imagery, we also have not
yet been able to evaluate the ability of our transfer
learning approach to predict changes in economic
well-being over time at particular locations. Such

predictionswouldbeveryhelpful tobothresearchers
and policy-makers and should be enabled in the
near futureas increasingamountsof high-resolution
satellite imagery become available (22).
Our transfer learning strategy of using a plen-

tiful but noisy proxy shows howpowerfulmachine
learning tools, which typically thrive in data-rich
settings, can be productively employed even when
data on key outcomes of interest are scarce. Our
approach could have broad application across
many scientific domains andmay be immediately
useful for inexpensively producing granular data
on other socioeconomic outcomes of interest to
the international community, such as the large
set of indicators proposed for the United Nations
Sustainable Development Goals (5).
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STATISTICAL PHYSICS

Quantum thermalization through
entanglement in an isolated
many-body system
Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,
Philipp M. Preiss, Markus Greiner*

Statistical mechanics relies on the maximization of entropy in a system at thermal
equilibrium. However, an isolated quantum many-body system initialized in a pure state
remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We
experimentally studied the emergence of statistical mechanics in a quantum state and
observed the fundamental role of quantum entanglement in facilitating this emergence.
Microscopy of an evolving quantum system indicates that the full quantum state remains
pure, whereas thermalization occurs on a local scale. We directly measured entanglement
entropy, which assumes the role of the thermal entropy in thermalization. The entanglement
creates local entropy that validates the use of statistical physics for local observables. Our
measurements are consistent with the eigenstate thermalization hypothesis.

W
hen an isolated quantum system is
perturbed—for instance, owing to a sud-
den change in the Hamiltonian (a so-
called quench)—the ensuing dynamics
are determined by an eigenstate distri-

bution that is induced by the quench (1). At any
given time, the evolving quantum state will have

amplitudes that depend on the eigenstates popu-
lated by the quench and the energy eigenvalues
of the Hamiltonian. In many cases, however,
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measure qubits
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Random Measurements & Quantum Information

Protocol for chain of qubits: 

measure qubits

`
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sA = ( 0 , 1 , 0 )

Random measurement

hP (sA)i= 1
NHA

random gate
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1+TrΩ2
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Average over Circular Unitary Ensemble (CUE)
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✓ Random measurement gives purity, and higher order Renyi entropies 

✓Required resources: - how realize random unitaries
- # measurements, # unitaries ? "the signal is 

the noise”



uibkI QOIRealization in Hubbard or Spin Model
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uibkI QOIRealization in Hubbard or Spin Model

⇢I

Random unitary 
as time evolution operator under 

random quenches
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uibkI QOIGeneration of Random Unitaries
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uibkI QOIScaling with System Size
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uibkI QOICertification of unitary n-designs
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Measurement Protocol in Hubbard & Spin Models
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uibkI QOIScaling of Statistical Error

Error for estimated purity (averaged over all outcomes) 

: number of measurements per unitary 
: number of unitaries 
: Hilbert space dimension of A
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uibkI QOIIllustrations of Renyi Entropy Measurements
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