Starts 23 May 2018 11:00
Ends 23 May 2018 12:00
Central European Time
Leonardo Building - Luigi Stasi Seminar Room
Spontaneous avalanche to plasma splits the core of an ellipsoidal Rydberg gas of nitric oxide. Ambipolar expansion first quenches the electron temperature of this core plasma. Then, long-range, resonant charge transfer from ballistic ions to frozen Rydberg molecules in the wings of the ellipsoid quenches the centre-of-mass ion / Rydberg molecule velocity distribution. This sequence of steps gives rise to a remarkable mechanics of self-assembly, in which the kinetic energy of initially formed hot electrons and ions drives an observed separation of plasma volumes. These dynamics adiabatically sequester energy in a reservoir of mass transport, starting a process that anneals separating volumes to form an apparent glass of strongly coupled ions and electrons. Short-time electron spectroscopy provides experimental evidence for complete ionization. The long lifetime of this system, particularly its stability with respect to recombination and neutral dissociation, suggests that this transformation affords a robust state of arrested relaxation, far from thermal equilibrium. We argue that this state of the quenched ultracold plasma offers an experimental platform for studying quantum many-body physics of disordered systems in the long-time and finite energy-density limits. The qualitative features of the arrested state fail to conform with classical models. Here, we develop a microscopic quantum description for the arrested phase based on an effective many-body spin Hamiltonian that includes both dipole-dipole and van der Waals interactions. This effective model offers a way to envision the quantum disordered non-equilibrium physics of this system.