Starts 17 Jan 2019 14:30
Ends 17 Jan 2019 15:30
Central European Time
ICTP
Leonardo Building - Luigi Stasi Seminar Room
Abstract: The category of Soergel bimodules plays an essential role in (higher) representation theory and for the construction of homological invariants in knot theory. The aim of this talk is to present a generalization of Soergel category attached to a Coxeter group of type A_2. While Soergel category counts a generating bimodule per simple reflection, this generalization is obtained by taking one generator per reflection. I will give a complete description of this category through a classification of its indecomposable objects and study its split Grothendieck ring. This gives rise to an algebra which is a quotient of the corresponding affine Hecke algebra of type A_2, that can be presented by generators and relations.
This is joint work with Thomas Gobet.