Workshop on Nano-Opto-Electro-Mechanical Systems Approaching the Quantum Regime

6 - 10 September 2010

Quantum Signatures of the Dynamics of a Vibrational Mode of a Thin Membrane within an Optical Cavity

David VITALI
School of Science & Tech.
University of Camerino
via Madonna delle Carceri, 9b, Camerino 62032 MC
ITALY
Quantum signatures of the dynamics of a vibrational mode of a thin membrane within an optical cavity

David Vitali
M. Karuza, C. Biancofiore, G. Di Giuseppe, R. Natali, M. Galassi, P. Tombesi
School of Science and Technology, Physics Division, University of Camerino, Italy

ICTP Workshop on “Nano-Opto-Electro-Mechanical Systems Approaching the Quantum Regime”, Sept. 6-10, 2010, Trieste
Outline of the talk

1. Optomechanical systems: the case of a thin membrane within a Fabry-Perot cavity (also with some experimental results)

2. Theory predictions on quantum phenomena: entanglement, ground-state cooling (with one or two mechanical modes), ponderomotive squeezing of the light mode
Why entering the quantum regime for opto- and electro-mechanical systems?

• **quantum-limited sensors**, i.e., working at the sensitivity limits imposed by Heisenberg uncertainty principle

• exploring the **boundary between the classical macroscopic world and the quantum microworld** (how far can we go in the demonstration of macroscopic quantum phenomena?)

• **quantum information applications** (optomechanical and electromechanical devices as **light-matter interfaces** and **quantum memories**), or **transducers for quantum computing architectures**
We focus on cavity optomechanics

1. Fabry-Perot cavity with a moving micromirror

- Micropillar mirror (LKB, Paris)
- Monocrystalline Si cantilever, (Vienna)

2. Silica toroidal optical microcavities

- Spoke-supported microresonator (Munich, Lausanne)
- With electronic actuation, (Brisbane)
Evanescent coupling of a SiN nanowire to a toroidal microcavity (Munich, Lausanne)

“membrane in the middle” scheme: Fabry-Perot cavity with a thin SiN membrane inside (Yale, and more recently Caltech, Camerino)

Photonic crystal “zipper” cavity (Caltech)

microdisk and a vibrating nanomechanical beam waveguide (Yale)
We focus here on the cavity-membrane system

Many cavity modes (still Gaussian TEM$_{mn}$ for an aligned membrane close to the waist)

$$H_{\text{cav}} = \sum_k \hbar \omega_k a_k^+ a_k$$

Many vibrational modes $u_{mn}(x, y)$ of the membrane

$$u_{mn}(x, y) = \sin \frac{n \pi x}{d} \sin \frac{m \pi y}{d}$$

Vibrational frequencies

$$\Omega_{mn} = \sqrt{\frac{\pi T}{\rho d^2}} (m^2 + n^2)$$

T = surface tension
ρ = SiN density,
t = membrane thickness
d = membrane side length
m,n = 1,2…
Membrane axial deformation field

\[z(x, y) = \sum_{n,m} \sqrt{\frac{\hbar}{M\Omega_{nm}}} q_{nm} u_{nm}(x, y) \]

Mode mass

\[M = \frac{\rho d^2}{4} \]

Dimensionless position and momentum of vibrational modes

\[[q_{nm}, p_{lk}] = i\delta_{nl}\delta_{mk} \]

Mechanical Hamiltonian

\[H_M = \sum_{n,m} \frac{\hbar \Omega_{nm}}{2} \left(p_{nm}^2 + q_{nm}^2 \right) \]

Optomechanical interaction due to radiation pressure

\[H_{\text{int}} = -\int dx dy P_{rad}(x, y) z(x, y) \]

(at first order in z)

Radiation pressure field

\[P_{rad}(x, y) = \varepsilon_0 \left(n_M^2 - 1 \right) \int_{-t/2}^{t/2} dz \left(\hat{E}(x, y, z) \times \hat{B}(x, y, z) \right) \]
Trilinear coupling describing photon scattering between cavity modes mediated by the vibrating membrane

\[
\hat{H}_{\text{int}} = -\hbar \sum_{l,k,n,m} c_{nmlk} a_l^+ a_k q_{nm}
\]

\(c_{nmlk} = \sqrt{\omega_l \omega_k / L} \sqrt{\hbar / M \Omega_{nm}} \beta_{nmlk}\)

\(\beta_{nmlk}\) = dimensionless coupling constants depending upon membrane position, thickness, transverse spatial overlap between optical and vibrational modes…..

Some first experimental data in Camerino

We have observed scattering between modes: simultaneous presence of a TEM00 mode (driven by the laser) and TEM0n (n ≥6) mode (scattered by the membrane)

CCD camera picture of the transverse patterns of the intracavity mode, showing the simultaneous presence of a TEM00 and TEM0n (n ≥6) mode
Mode coupling and the corresponding frequency shifts can be tuned by adjusting the position and orientation of the membrane.

Relative frequency of the two modes TEM00 and TEM0n versus the membrane displacement. The data are consistent with a splitting of about 1 MHz (see also J. Sankey et al., Nat. Phys, July 2010, for a much more detailed study of mode coupling).

Coupling quadratic in q.

Excitation spectrum of the vibrational modes of the SiN membranes, both in the presence and in absence of electromechanical driving (room temperature, low mechanical Q \rightarrow well in the classical regime).
Let us now focus on a simpler situation: single mechanical oscillator, non-linearly coupled by radiation pressure, to a single optical oscillator.

This is possible when:

• The external laser (with frequency $\omega_L \approx \omega_a$) drives only a single cavity mode a and scattering into the other cavity modes is negligible (no frequency close mode)

• A bandpass filter in the detection scheme can be used, isolating a single mechanical resonance

\[
\hat{H}_{\text{int}} \approx -\hbar G_0 a^+ a_q
\]

\[
\hat{H}_{\text{drive}} = i\hbar \left(E e^{-i\omega_L t} a^+ - E^* e^{i\omega_L t} a \right)
\]

\[
E = \sqrt{\frac{2\kappa P_L}{\hbar \omega_L}} \quad \text{amplitude of the driving laser with input power } P_L
\]

[Image of a graph showing noise power and frequency]
• **The membrane** is in contact with an **ohmic environment at temperature** T;

Fluctuation-dissipation theorem \Rightarrow presence of a **quantum Langevin force** ξ with correlation functions

\[
\langle \xi(t)\xi(t') \rangle = \frac{\gamma_m}{\omega_m} \int \frac{d\omega}{2\pi} e^{i\omega(t-t')} \omega \left[\coth\left(\frac{\hbar\omega}{kT} \right) + 1 \right]
\]

Gaussian, generally non-Markovian

• **The cavity mode** is damped by **two** independent processes:

1. **photon leakage** through the mirrors, with decay rate κ_1

2. **absorption by the membrane**, with decay rate $\kappa_2(q)$, non-standard because of membrane position dependence \Rightarrow further nonlinearity

Each decay is associated with a **vacuum input Langevin noise** $a_{in}^{jk}(t)$ with correlation functions

\[
\langle a_{in}^{jk}(t)a_{in}^{k}(t') \rangle = \langle a_{in}^{jk}(t)^+a_{in}^{k}(t') \rangle = 0 \quad \langle a_{in}^{jk}(t)a_{in}^{k}(t')^+ \rangle = \delta_{jk}\delta(t-t')
\]

Gaussian, Markovian
Description in terms of Heisenberg-Langevin equations (in the frame rotating at ω_L)

\[\dot{a} = -i[\omega_a - \omega_L - G_0 q]a - [\kappa_1 + \kappa_2(q)]a + E + \sqrt{2\kappa_1} a^{(1)}_{in} + \sqrt{2\kappa_2(q)} a^{(2)}_{in} \]

\[\dot{q} = \omega_m p \]

\[\dot{p} = -\omega_m q + G_0 a^+ a - \gamma_m p + \xi + \frac{\partial_q \kappa_2(q)}{\sqrt{2\kappa_2(q)}} \left[a_{in}^{(2)} a^+ + a^{(2)}_{in} a^+ \right] \]

Additional non-standard terms due to membrane absorption;

how much do they affect quantum effects?
Strong driving E and high-finesse cavity \Rightarrow steady-state with an intense intracavity field (amplitude α_s) and deformed membrane.

We focus on the linearized dynamics of the quantum fluctuations around this steady state (only cavity mode is linearized \Rightarrow exact for $|\alpha_s| >> 1$)

$$\alpha \rightarrow \alpha_s + \delta \alpha \quad q \rightarrow q^s + \delta q$$

$$\kappa = \kappa_1 + \kappa_2 \left(q^s\right)$$

Nonlinear eqn. for the intracavity steady-state amplitude

Effective cavity detuning

Radiation pressure optical bistability (Dorsel et al., 1983, more recently in cavity-BEC systems, (see Esslinger talk)
Optical bistability by radiation pressure observed also in our cavity-membrane system

$$|\alpha_s|^2 = \frac{|E|^2}{\kappa^2 + \Delta^2(\alpha_s)}$$

Experimental data

Dynamical transition to the new steady state at mechanical frequencies
Back to theory: Quantum dynamics of the fluctuations: Linearized quantum Langevin equations

\[\ddot{q} = \omega_m \dot{p} \]
\[\ddot{p} = -\omega_m \dot{q} - \gamma_m \dot{p} + G \delta X + \xi + \frac{\partial q \kappa_2(q^s) \alpha_s}{\sqrt{\kappa_2(q)}} Y^{(2)}_{in} \]
\[\dot{X} = -\kappa \delta X + \Delta \delta Y - \sqrt{2} \alpha_s \partial_q \kappa_2(q^s) \dot{q} + \sqrt{2} \kappa_1 X^{(1)}_{in} + \sqrt{2} \kappa_2(q^s) Y^{(2)}_{in} \]
\[\dot{Y} = -\kappa \delta Y - \Delta \delta X + G \dot{q} + \sqrt{2} \kappa_1 Y^{(1)}_{in} + \sqrt{2} \kappa_2(q^s) Y^{(2)}_{in} \]

Amplitude quadrature \[\delta X = \frac{\delta a + \delta a^+}{\sqrt{2}} \]
Phase quadrature \[\delta Y = \frac{\delta a - \delta a^+}{i \sqrt{2}} \]

Amplitude noise \[X^{(j)}_{in} = \frac{\delta a^{(j)}_{in} + \delta a^{(j)}_{in}^+}{\sqrt{2}} \]
Phase noise \[Y^{(j)}_{in} = \frac{\delta a^{(j)}_{in} - \delta a^{(j)}_{in}^+}{i \sqrt{2}} \]

Additional terms due to membrane absorption

Effective radiation pressure coupling \[G = 2G_0 \sqrt{\frac{P_l \kappa}{\hbar \omega_L \left(\Delta^2 + \kappa^2 \right)}} \]
1. STEADY STATE ENTANGLEMENT

When the system is **stable**, it reaches for \(t \to \infty \) a **Gaussian steady state**, due to:

1. Linearized dynamics
2. Gaussian quantum noises

\[\rho \text{ Gaussian } \iff \text{Gaussian characteristic function} \]

\[\Phi(\vec{\lambda}) = \text{Tr}[\rho e^{-i\vec{\lambda}^T \vec{\xi}}] = \exp\left[-\frac{\vec{\lambda}^T V \vec{\lambda}}{2} + i \vec{\alpha}^T \vec{\lambda}\right] \]

\[\vec{\xi}^T = (\delta q, \delta p, \delta X, \delta Y) \]

correlation matrix (CM)

fully characterizing the steady state and its entanglement properties (we use log-negativity)

2. GROUND STATE COOLING OF THE MEMBRANE MODES

The steady state CM, \(V \), contains also the info about the stationary energy of the membrane mode, \(U \)

\[
V_{11} = \langle \delta q^2 \rangle \quad V_{22} = \langle \delta p^2 \rangle
\]

\[
U = \frac{\hbar \omega_m}{2} \left[\langle \delta q^2 \rangle + \langle \delta p^2 \rangle \right] \equiv \hbar \omega_m \left(n_{eff} + \frac{1}{2} \right)
\]

Is it possible to get **simultaneous optomechanical steady-state entanglement and ground state cooling** (\(\delta q^2 = \delta p^2 = \frac{1}{2} \)) of a membrane mode with state of the art parameters, **despite membrane absorption** (Im \(n \sim 10^{-4} \))
For parameters similar to those of our current experiment: $M = 35$ ng, $\omega_m/2\pi = 250$ KHz, $Q_m = 10^6$, $P_L = 650$ μW, $L = 7$ cm, $F_0 = 20000$, $T = 4$ K, $t = 50$ nm, $\Delta \sim \omega_m$, $n_M = 2.2 + i \times 10^{-4}$

Blue: $n_{eff} =$ ground state occupancy
Red: E_N, Log-negativity
$t (50 \text{ nm})$ membrane thickness

Cavity resonant with the laser blue sideband

(e) Finesse, $\overline{F}_0 = 22000$
Relaxing the single mechanical mode description: What if a nearby mechanical mode is present?

Everything depends upon the **frequency mismatch** between the two modes \(\delta \omega_{21} = \omega_2 - \omega_1 \)

Cooling is not disturbed if the two modes are not too close: the two modes are even simultaneously cooled

\[F = 1.5 \cdot 10^5, \; \kappa \approx 0.2 \omega_m \]

\[F = 3 \cdot 10^4, \; \kappa \approx \omega_m \]
Cooling is inhibited when the frequencies are close!

It happens when the modes are separated by less than the effective mechanical width, $\delta \omega_{21} < \Gamma_2$ (net laser cooling rate)

$$\omega_2 = 0.95 \omega_1$$

\[\Delta_2 = \omega_1 \]

This inhibition is due to a classical destructive interference phenomenon, similar to a classical analogue of electromagnetically induced transparency (EIT).

\[\gamma_i^{eff}(\omega) \approx \gamma_1 + \Gamma_1 \frac{\left(\omega_2^2 - \omega^2 \right)^2 + \omega^2 \gamma_2 \Gamma_2}{\left(\omega_2^2 - \omega^2 \right)^2 + \omega^2 \Gamma_2^2} \]

\[\gamma_i^{eff}(\omega_1) \approx \gamma_1 + \Gamma_1 \left(\gamma_2 / \Gamma_2 \right) \approx \gamma_1 \quad \text{when} \quad \delta \omega_2 \approx 0 \]
Alternative explanation: when $\delta \omega_{21} = 0$, radiation pressure couples the cavity mode only with the effective “center-of-mass” of the two mechanical modes

$$q_{cm} = \frac{G_0^1 q_1 + G_0^2 q_2}{[G_0^1]^2 + [G_0^2]^2}$$

$$q_r = \frac{G_0^1 q_2 - G_0^2 q_1}{[G_0^1]^2 + [G_0^2]^2}$$

$$H_{mech} = \frac{\hbar \omega_{cm}}{2} \left(q_{cm}^2 + p_{cm}^2 \right) + \frac{\hbar \omega_r}{2} \left(q_r^2 + p_r^2 \right)$$

$$+ \frac{\hbar (\omega_2 - \omega_1) G_0^1 G_0^2}{[G_0^1]^2 + [G_0^2]^2} \left(q_{cm} q_r + p_{cm} p_r \right)$$

When $\delta \omega_{21} = 0$, the “relative motion” is decoupled from the center-of-mass and the cavity mode \Rightarrow is uncooled and therefore also the two modes are uncooled.
EFFECT OF NEARBY MODE ON ENTANGLEMENT

Similar to cooling: the two modes are simultaneously entangled with the cavity mode if they are not too close \(\delta \omega_2 > \Gamma_2 \)

\[\omega_2 = 1.5 \omega_1 \]

Entanglement is more fragile and more affected than cooling
EFFECT OF NEARBY MODE ON ENTANGLEMENT

The situation is more involved when the modes are close \(\delta \omega_{21} < \Gamma_2 \)

At \(T = 0 \)

Entanglement at \(T = 0 \) increases at resonance because the “center-of-mass” is strongly entangled with the cavity

But entanglement at resonance is soon destroyed by temperature due to the uncooled “relative motion”
FURTHER POSSIBLE QUANTUM EFFECT: GENERATION OF SQUEEZED LIGHT AT THE CAVITY OUTPUT

Predicted by Mancini-Tombesi, and Fabre et al. in 1994

Feedback-assisted generation of squeezing?
Feedback does not help, but **squeezing is possible** with state-of-the-art devices (main problem: low-frequency phase noise)

D. Vitali & P. Tombesi, CR Physique, to appear
CONCLUSIONS

1. Some preliminary experimental results with a cavity-membrane-in-the-middle system

2. Membrane absorption does not seriously affects ground state cooling and entanglement

3. Simultaneous cooling and entanglement of two mechanical modes is possible only if they are not too close in frequency

4. Quadrature squeezing of the cavity output is feasible with state-of-the-art systems