Description |
Michele Ceriotti
(EPFL, Lausanne, Switzerland) Machine-learning techniques are often applied to perform "end-to-end" predictions, that is to make a black-box estimate of a property of interest using only a coarse description of the corresponding inputs.
In contrast, atomic-scale modeling of matter is most useful when it allows one to gather a mechanistic insight into the microscopic processes that underlie the behavior of molecules and materials.
Zoom registration link: |