In this talk I will discuss the motion of a tracer particle driven by an external constant force through a quiescent lattice gas. Due to the interaction between the tracer and the bath particles, here modelled as an exclusion process, the driven tracer reaches a steady-state when the external force and the friction exerted by the bath balance each other. The steady-state is characterised by a non equilibrium broad inhomogeneity of the bath density surrounding the driven tracer yielding a rich variety of behaviours. I show that depending on the effective dimension of the lattice, the driven tracer exhibits from sub-diffusive to strong super-diffusive transport in the limit of high of bath particles. Moreover, when more than one driven tracers exist, the external and friction forces mediate an anisotropic attractive interacting force between the tracers, leading to the formation of clusters. I will show through numerical results that such scenario extends into continuous-space and continuous-time dynamics.