Description |
Registration Instructions:
- If you have already registered for a previous CMSP seminar there is no need to register again. Please remember to use the link within the email you received after the registration to join the webinar. - If you have NOT registered before, please make sure to register several days in advance before the webinar to the Seminar Series by clicking here. ___________________________________________________________________
Abstract: In 2012, the first reports of high efficiency solid-state solar cells based on organohalide lead perovskites completely revolutionized the field. These materials are used as light-absorbers in DSCs and as light-harvesting and electron conductor in meso-superstructured and flat heterojunction perovskite solar cells (PSCs) and show certified efficiencies that currently exceed 25%. To effectively compete with conventional photovoltaics, emerging technologies need to achieve higher efficiency and stability, while maintaining low production costs. Many of the advances in the DSCs and PSCs field have relied on the computational design and screening of new materials. Suitable modeling strategies further allow researchers to observe the otherwise inaccessible but crucial hetero-interfaces that control the solar cell operation, allowing researchers the opportunity to develop new and more efficient materials and optimize processes. We illustrate the basic device architectures and operating principles of both DSCs and PSCs highlighting the fundamental modeling strategies and revealing fundamental aspects of the device’s operational mechanism. Although the modeling of DSCs is relatively mature, the recent “perovskite storm” has presented new problems and new modeling challenges, such as understanding exciton formation/dissociation at interfaces and carrier recombination in these materials.
References:
1. De Angelis, F. Acc. Chem. Res. 2014, 47, 3349. 2. De Angelis, F.; Di Valentin, C.; Fantacci, S.; Vittadini, A.; Selloni, A. Chem. Rev. 2014, 114, 9708. 3. Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Energy Environ. Sci. 2015, 8, 2118. 4. Mosconi, E.; Meggiolaro, D.; Snaith, H.; Stranks, S. D.; De Angelis, F. Energy Environ. Sci. 2016, 9, 3180. 5. Quarti, C.; Mosconi, E.; Ball, J. M.; D'Innocenzo, V.; Tao, C.; Pathak, S.; Snaith, H.; Petrozza, A.; De Angelis, F. Energy Environ. Sci. 2016, 9, 155. 6. Chen, B.; Li, T.; Dong, Q.; Mosconi, E.; Song, J.; Chen, Z.; Deng, Y.; Liu, Y.; Ducharme, S.; Gruverman, A.; De Angelis, F.; Huang, J. Nat. Mater., 2018, 17, 1020-1026. 7. De Angelis, F.; Petrozza, A. Nat. Mater., 2018, 17, 377–384. 8. Yang S.; Chen S.; Mosconi E.; Fang Y.; Xiao X.; Wang C.; Zhou Y.; Yu Z.; Zhao J.; Gao Y.; De Angelis F.; Huang J. Science, 2019, 365, 473–478. 9. Motti S. G.; Meggiolaro D.; Barker A. J.; Mosconi E.; Perini C. A. R.; Ball J. M.; Gandini M.; Kim M.; De Angelis F.; Petrozza A. Nat. Photonics, 2019, 15, 532–539. 10. De Angelis F. ACS Energy Lett., 2020, 5, 935-937. |