Starts 16 Mar 2011 15:00
Ends 16 Mar 2011 20:00
Central European Time
ICTP
Leonardo da Vinci Building Luigi Stasi Seminar Room
Strada Costiera, 11 I - 34151 Trieste (Italy)
Skew products over topological Markov chains naturally appear when one attempts to apply the methods of classical dynamical systems to random dynamical systems. There is also a close connection between these skew products and partially hyperbolic dynamical systems on smooth manifolds. Even for the fiber dimension equal to one, we are far from understanding what "typical" skew products look like. During the last 30 years there appeared several papers studying the skew products with a circle fiber. I will talk about the case when the fiber is an interval, and fiber maps are orientation-preserving diffeomorphisms. In the work joint with V.Kleptsyn, we developed a theorem which gives us a complete* description of the dynamics of typical step skew products (fiber map depends only on a single symbol in the base sequence). For generic skew products, we obtained a similar result using an additional assumption of partial-hyperbolic nature. *except some subset which projects onto zero measure set in the base
  • A. Bergamo