Starts 9 Feb 2012 11:30
Ends 9 Feb 2012 20:00
Central European Time
Leonardo da Vinci Building Luigi Stasi Seminar Room
Strada Costiera, 11 I - 34151 Trieste (Italy)
When a fluid is cooled down sufficiently rapidly to avoid crystallization, its dynamics slow down very rapidly, and an amorphous solid is formed. This phenomenon is called the glass transition. When piling randomly in a box more and more spheres, a density is eventually attained, where all spheres come in contact. At this density and upon further compression, the system acquires rigidity: it is the jamming transition. Jamming and glass transition are very old statistical mechanics problems that are often associated with one another, because intuition suggests that both phenomenons arise from the same physical effect, the caging of each particle by its shell of neighbours. During my phd thesis, I studied analytically a model system of harmonic spheres (soft spheres that repel each other with finite amplitude and finite range), that allows to simultaneously study the jamming and the glass transition. I will present results obtained on the dynamics near the glass transition, as well as thermodynamics near the jamming point, with field theoretic methods and replica theory.
  • M. Poropat